【題目】已知函數(shù)f(x)=lnx﹣ax+1(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=lnx,若對任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,求實數(shù)a的取值范圍.
【答案】(1)當a≤0時,f(x)單調(diào)遞增區(qū)間是(0,+∞);當a>0時,f(x)單調(diào)遞增區(qū)間是(0,),單調(diào)遞減在區(qū)間是(,+∞).(2)a.
【解析】
(1)函數(shù)求導得,然后分a≤0和a>0兩種情況分類求解.
(2)根據(jù)對任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,等價于f(x)max<g(x)max,然后分別求最大值求解即可.
(1),
當a≤0時,f′(x)>0,f(x)單調(diào)遞增,
當a>0時,在區(qū)間(0,)上,f′(x)>0,f(x)單調(diào)遞增,
在區(qū)間(,+∞)上,f′(x)<0,f(x)單調(diào)遞減.
綜上:當a≤0時,f(x)單調(diào)遞增區(qū)間是(0,+∞),
當a>0時,f(x)單調(diào)遞增區(qū)間是(0,),單調(diào)遞減在區(qū)間是(,+∞).
(2),
在區(qū)間(1,3)上,g′(x)>0,g(x)單調(diào)遞增,
在區(qū)間(3,+∞)上,g′(x)<0,g(x)單調(diào)遞減,
所以g(x)max=g(3)=ln3,
因為對任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,
等價于f(x)max<g(x)max,
由(1)知當a≤0時,f(x)無最值,
當a>0時,f(x)max=f()=﹣lna,
所以﹣lna<ln3,
所以,
解得a.
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)店經(jīng)營各種兒童玩具,該網(wǎng)店老板發(fā)現(xiàn)該店經(jīng)銷的一種手腕可以搖動的款芭比娃娃玩具在某周內(nèi)所獲純利(元)與該周每天銷售這種芭比娃娃的個數(shù)(個)之間的關(guān)系如下表:
每天銷售芭比娃娃個數(shù)(個) | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
該周內(nèi)所獲純利(元) | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)由表中數(shù)據(jù)可推測線性相關(guān),求出回歸直線方程;
(2)請你預(yù)測當該店每天銷售這種芭比娃娃20件時,每周獲純利多少?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,,是某景區(qū)的兩條道路(寬度忽略不計,為東西方向),Q為景區(qū)內(nèi)一景點,A為道路上一游客休息區(qū),已知,(百米),Q到直線,的距離分別為3(百米),(百米),現(xiàn)新修一條自A經(jīng)過Q的有軌觀光直路并延伸至道路于點B,并在B處修建一游客休息區(qū).
(1)求有軌觀光直路的長;
(2)已知在景點Q的正北方6百米的P處有一大型組合音樂噴泉,噴泉表演一次的時長為9分鐘,表演時,噴泉噴灑區(qū)域以P為圓心,r為半徑變化,且t分鐘時,(百米)(,).當噴泉表演開始時,一觀光車S(大小忽略不計)正從休息區(qū)B沿(1)中的軌道以(百米/分鐘)的速度開往休息區(qū)A,問:觀光車在行駛途中是否會被噴泉噴灑到,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】奇函數(shù)f(x)在R上存在導數(shù),當x<0時,f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是定義在上的偶函數(shù),對任意,都有,且當時,.在區(qū)間內(nèi)關(guān)于的方程恰有個不同的實數(shù)根,則實數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,在等腰梯形中,,,是的中點.將沿折起,使二面角為,連接,得到四棱錐(如圖乙),為的中點,是棱上一點.
(1)求證:當為的中點時,平面平面;
(2)是否存在一點,使平面與平面所成的銳二面角為,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)的圖象在處的切線斜率為1,求實數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖①中△ABC 為直角三角形D、E 分別為 AB、AC 的中點,將△ADE 沿 DE 折起使平面 ADE⊥BCED,連接 AB,AC,BE如圖②所示.
(1)在線段AC上找一點P,使EP∥平面ABD,并求出異面直線AB、EP所成的角;
(2)在平面ABD內(nèi)找一點Q,使PQ⊥平面ABE,并求三棱錐P-ABE的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com