8.設(shè)a,b∈R,c∈[0,2π),若對任意實數(shù)x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),則滿足條件的a,b,c的組數(shù)為(  )
A.1組B.2組C.3組D.4組

分析 由題意確定a,b,從而可得滿足條件的a,b,c的組數(shù).

解答 解:由題意2sin(3x-$\frac{π}{3}$)=asin(bx+c),他們周期和最值相同,
∵sin(bx+c)在b∈R,c∈[0,2π)的值可以取得±1,
∴a=±2.
同理:對任意實數(shù)x都成立,他們周期相同,∴b=±3.
那么c∈[0,2π)只有唯一的值與其對應(yīng).
∴滿足條件的a,b,c的組數(shù)為4組.
故選:D.

點評 本題考查了三角函數(shù)的性質(zhì)的靈活運用.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知指數(shù)函數(shù)$f(x)={(\frac{1}{2})^x}$,則使得f(m)>1成立的實數(shù)m的取值范圍是( 。
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.利用計算器,列出自變量和函數(shù)值的對應(yīng)值如表:
x-1.6-1.4-1.2-1-0.8-0.6-0.4-0.20
y=2x0.32990.37890.43530.50.57430.65980.75790.87061
y=x22.561.961.4410.640.360.160.040
那么方程2x=x2有一個根位于下列區(qū)間的( 。
A.(-1.6,-1.2)B.(-1.2,-0.8)C.(-0.8,-0.6)D.(-0.6,-0.2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)的定義域為R.?a,b∈R,若此函數(shù)同時滿足:
(i)當(dāng)a+b=0時,有f(a)+f(b)=0;(ii)當(dāng)a+b>0時,有f(a)+f(b)>0,則稱函數(shù)f(x)為Ω函數(shù).在下列函數(shù)中是Ω函數(shù)的是( 。
①y=x+sinx;②y=3x-($\frac{1}{3}$)x;③y=$\left\{\begin{array}{l}{0,x=0}\\{-\frac{1}{x},x≠0}\end{array}\right.$.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點,∠CA1D=30°且AB=4,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.三角形ABC中,AB=2且AC=2BC,則三角形ABC面積的最大值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是 菱形,AC=6,$BD=6\sqrt{3}$,E是PB上任意一點.
(1)求證:AC⊥DE;
(2)當(dāng)△AEC的面積最小時,求證:CE⊥面PAB
(3)當(dāng)△AEC的面積最小值為9時,問:線段BC上是否存在點G,使EG與平面PAB所成角的正切值為2?若存在,求出BG的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,D是△ABC內(nèi)一點,角A,B,C的對邊分別是a,b,c,且滿足∠D=2∠B,cos∠D=-$\frac{1}{3}$,AD=2,△ACD的面積是4$\sqrt{2}$.
(1)求線段AC的長;
(2)若BC=4$\sqrt{3}$,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.圓心在x+y=0上,且與x軸交于點A(-3,0)和B(1,0)的圓的方程為( 。
A.(x+1)2+(y-1)2=5B.(x-1)2+(y+1)2=$\sqrt{5}$C.(x-1)2+(y+1)2=5D.(x+1)2+(y-1)2=$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案