18.已知指數(shù)函數(shù)$f(x)={(\frac{1}{2})^x}$,則使得f(m)>1成立的實數(shù)m的取值范圍是( 。
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)求出m的范圍即可.

解答 解:指數(shù)函數(shù)$f(x)={(\frac{1}{2})^x}$在R遞減,
若f(m)>1,則m<0,
故選:D.

點評 本題考查了指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.平面直角坐標(biāo)系xoy中,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,過橢圓右焦點F作兩條相互垂直的弦,當(dāng)其中一條弦所在直線斜率為0時,兩弦長之和為6.
(1)求橢圓的方程;
(2)A,B是拋物線C2:x2=4y上兩點,且A,B處的切線相互垂直,直線AB與橢圓C1相交于C,D兩點,求弦|CD|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)向量$\overrightarrow{a}$=(4,2),$\overrightarrow$=(1,-1),則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$等于( 。
A.2B.-2C.-12D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,在三棱柱ABCA1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,
求證:(1)GH∥面ABC
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)U=R,集合A={x|-3≤x≤5},B={x|x<-2,或x>6},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a,b,c為三條不重合的直線,α,β,γ為三個不重合的平面,給出四個命題:
①$\left.\begin{array}{l}{α∥c}\\{β∥c}\end{array}\right\}$⇒α∥β;②$\left.\begin{array}{l}{α∥γ}\\{β∥γ}\end{array}\right\}$⇒α∥β;③$\left.\begin{array}{l}{α∥c}\\{a∥c}\end{array}\right\}$⇒a∥α;④$\left.\begin{array}{l}{a∥γ}\\{β∥γ}\end{array}\right\}$⇒a∥β
其中正確的命題是( 。
A.①②③B.①④C.D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若直線a∥α,直線b?α,則直線a與直線b的位置關(guān)系為平行或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=lg(10x+1)-ax是偶函數(shù),$g(x)=\frac{{{4^x}+b}}{2^x}$是奇函數(shù),則a+b的值為( 。
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)a,b∈R,c∈[0,2π),若對任意實數(shù)x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),則滿足條件的a,b,c的組數(shù)為( 。
A.1組B.2組C.3組D.4組

查看答案和解析>>

同步練習(xí)冊答案