雙曲線x2-y2=a(a≠0)的離心率是( 。
A、
2
B、
2
2
C、2
D、
1
2
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:雙曲線x2-y2=a(a≠0)為等軸雙曲線,離心率是
2
,可得結(jié)論.
解答: 解:雙曲線x2-y2=a(a≠0)為等軸雙曲線,離心率是
2
,
故選:A.
點評:本題以雙曲線為載體,考查雙曲線的簡單性質(zhì),解題的關(guān)鍵是正確運(yùn)用雙曲線的標(biāo)準(zhǔn)方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中與函數(shù)y=x相等的函數(shù)是(  )
A、y=(
x
2
B、y=
x2
C、y=2 log2x
D、y=log22x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-|2x-1|,x∈[0,1].定義:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n=2,3,4,…滿足fn(x)=x的點x∈[0,1]稱為f(x)的n階不動點.則f(x)的n階不動點的個數(shù)是( 。
A、2n個
B、2n2
C、2(2n-1)個
D、2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=log2x-x+2的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1,棱長為4,點A1到截面AB1D1的距離為( 。
A、
16
3
B、
4
3
3
C、
3
4
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)的左右焦點,A為雙曲線的左頂點,以F1F2為直徑的圓交雙曲線某條漸近線于M、N兩點,且滿足∠MAN=120°,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C方程(x-2)2+(y-1)2=5,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,B點是圓C與y軸的交點,求|PB|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)m滿足不等式0.642m+3<1.253m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:直線a,b,平面α,β,γ,給出下列四個命題:
①a∥b,a⊥α,b∥β,則α⊥β;  
②a∥b,a∥α,b∥β,則α∥β;
③α⊥γ,β⊥γ,則α∥β;       
④a∥α,a∥β,α∩β=b,則a∥b.
其中真命題是
 
(填寫真命題的編號).

查看答案和解析>>

同步練習(xí)冊答案