已知數(shù)列的前n項和(n為正整數(shù))。
(Ⅰ)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)令,試比較與的大小,并予以證明。
(1) 數(shù)列是首項和公差均為1的等差數(shù)列,
(2) 當(dāng),當(dāng)時
解析試題分析:(I)在中,令n=1,可得,即
當(dāng)時,,
.
又數(shù)列是首項和公差均為1的等差數(shù)列.
于是.
(II)由(I)得,所以
由①-②得
于是確定的大小關(guān)系等價于比較的大小由 可猜想當(dāng)證明如下:
證法1:(1)當(dāng)n=3時,由上驗算顯示成立。
(2)假設(shè)時
所以當(dāng)時猜想也成立
綜合(1)(2)可知 ,對一切的正整數(shù),都有
證法2:當(dāng)時
綜上所述,當(dāng),當(dāng)時
考點:數(shù)列的通項公式和求和,數(shù)學(xué)歸納法
點評:解決該試題的關(guān)鍵是能熟練的結(jié)合通項公式與前n項和的關(guān)系來得到通項公式,并運用數(shù)學(xué)歸納法來證明。屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項和為,且
(1)寫出與的遞推關(guān)系式,并求,,的值;
(2)猜想關(guān)于的表達式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在區(qū)間上有極值,求實數(shù)的取值范圍;
(2)若關(guān)于的方程有實數(shù)解,求實數(shù)的取值范圍;
(3)當(dāng),時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列的前項和為,滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足,為數(shù)列的前項和,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在數(shù)列中,且成等差數(shù)列,成等比數(shù)列
(1)求及;
(2)猜想的通項公式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知數(shù)列滿足.
(1)設(shè),證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
正項單調(diào)數(shù)列的首項為,時,,數(shù)列對任意均有
(1)求證:數(shù)列是等差數(shù)列;
(2)已知,數(shù)列滿足,記數(shù)列的前項和為,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)數(shù)列的前項和為,,,等差數(shù)列滿足,
(I)分別求數(shù)列,的通項公式;
(II)若對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com