【題目】如圖,邊長為2的正方形ABCD中,

(1)點E是AB的中點,點F是BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′.求證:A′D⊥EF
(2)當(dāng)BE=BF= BC時,求三棱錐A′﹣EFD的體積.

【答案】
(1)解:由正方形ABCD知,∠DCF=∠DAE=90°,

∴A'D⊥A'F,A'D⊥A'E,

∵A'E∩A'F=A',A'E、A'F平面A'EF.

∴A'D⊥平面A'EF.

又∵EF平面A'EF,

∴A'D⊥EF.


(2)解:由四邊形ABCD為邊長為2的正方形

故折疊后A′D=2,A′E=A′F= ,EF=

則cos∠EA′F= =

則sin∠EA′F=

故△EA′F的面積SEAF= A′EA′Fsin∠EA′F=

由(1)中A′D⊥平面A′EF

可得三棱錐A'﹣EFD的體積V= × ×2=


【解析】(1)由正方形ABCD知∠DCF=∠DAE=90°,得A'D⊥A'F且A'D⊥A'E,所以A'D⊥平面A'EF.結(jié)合EF平面A'EF,得A'D⊥EF;(2)由勾股定理的逆定理,得△A'EF是以EF為斜邊的直角三角形,而A'D是三棱錐D﹣A'EF的高線,可以算出三棱錐D﹣A'EF的體積,即為三棱錐A'﹣DEF的體積.
【考點精析】本題主要考查了直線與平面垂直的性質(zhì)的相關(guān)知識點,需要掌握垂直于同一個平面的兩條直線平行才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線,拋物線 有公共的焦點, 在第一象限的公共點為,直線的傾斜角為,且,則關(guān)于雙曲線的離心率的說法正確的是()

A. 僅有兩個不同的離心率 B. 僅有兩個不同的離心率 C. 僅有一個離心率 D. 僅有一個離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC1是正方體ABCD﹣A1B1C1D1的對角線.

(1)求證:平面A1BD∥平面CD1B1;
(2)求證:直線AC1⊥直線BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在y=2x2上有一點P,它到A(1,3)的距離與它到焦點的距離之和最小,則點P的坐標(biāo)是(
A.(﹣2,1)
B.(1,2)
C.(2,1)
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是矩形,平面 平面,且是邊長為的等邊三角形, ,點的中點.

(1)求證: 平面 ;

(2)點 上,且滿足 ,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,P、Q分別為邊AB、DA上的點,當(dāng)△APQ的周長為2時,求∠PCQ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若 ,求曲線 在點 處的切線方程;

(2)若對任意 在恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于平面向量,有下列四個命題:
①若
=(1,1), =(2,x),若 平行,則x=2.
③非零向量 滿足| |=| |=| |,則 的夾角為60°.
④點A(1,3),B(4,﹣1),與向量 同方向的單位向量為( ).
其中真命題的序號為 . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ,求tanx的值;
(2)若 的夾角為 ,求x的值.

查看答案和解析>>

同步練習(xí)冊答案