【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米,圓心角為(弧度)的扇形觀(guān)景水池,其中, 為扇形的圓心,同時(shí)緊貼水池周邊(即: 和所對(duì)的圓弧)建設(shè)一圈理想的無(wú)寬度步道.要求總預(yù)算費(fèi)用不超過(guò)24萬(wàn)元,水池造價(jià)為每平方米400元,步道造價(jià)為每米1000元.
(1)若總費(fèi)用恰好為24萬(wàn)元,則當(dāng)和分別為多少時(shí),可使得水池面積最大,并求出最大面積;
(2)若要求步道長(zhǎng)為105米,則可設(shè)計(jì)出的水池最大面積是多少?
【答案】(1), ,面積最大值為400平方米.(2)水池的最大面積為337.5平方米.
【解析】試題分析:(1)先根據(jù)總費(fèi)用確定和關(guān)系,再根據(jù)扇形面積公式得關(guān)于r函數(shù),利用導(dǎo)數(shù)或基本不等式求最值(2)先根據(jù)步道長(zhǎng)確定和關(guān)系,再根據(jù)扇形面積公式得關(guān)于r二次函數(shù) ,根據(jù)對(duì)稱(chēng)軸與定義區(qū)間位置關(guān)系求最值
試題解析:解(1)法1:弧長(zhǎng)AB為,扇形面積為,
則即
所以
當(dāng)且僅當(dāng)取等號(hào),此時(shí)
答: , ,面積最大值為400平方米.
法2:利用基本不等式.
(2) 由
,
所以
所以所以
. , ,
所以, 時(shí),水池的最大面積為337.5平方米.
答: 的取值范圍為,且當(dāng), ,水池的最大面積為337.5平方米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分13分)已知數(shù)列的前項(xiàng)和為, ,且是與的等差中項(xiàng).
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前項(xiàng)和為,且對(duì),恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, , , .
(Ⅰ)證明: ;
(Ⅱ)若,在棱上是否存在點(diǎn),使得二面角的大小為,若存在,求的長(zhǎng),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門(mén)的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來(lái)估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過(guò)5000步的有人,超過(guò)10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)求證: ;
(Ⅲ)判斷曲線(xiàn)是否位于軸下方,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),曲線(xiàn)C: (α為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系,直線(xiàn)l:ρ.
(Ⅰ)求曲線(xiàn)C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(Ⅱ)曲線(xiàn)C上恰好存在三個(gè)不同的點(diǎn)到直線(xiàn)l的距離相等,分別求出這三個(gè)點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩個(gè)學(xué)校高三年級(jí)分別有1100人,1000人,為了了解兩個(gè)學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)二?荚嚨臄(shù)學(xué)成績(jī)清況,采用分層抽樣方法從兩個(gè)學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
乙校:
(1)計(jì)算的值;
(2)若規(guī)定考試成績(jī)?cè)?/span>內(nèi)為優(yōu)秀,請(qǐng)根據(jù)樣本估計(jì)乙校數(shù)學(xué)成績(jī)的優(yōu)秀率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷是否有的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異.
附: ; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線(xiàn)段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(1)求證:PB⊥DE;
(2)若PE⊥BE,PE=1,求點(diǎn)B到平面PEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為, 為其右焦點(diǎn),若,設(shè),且,則該橢圓離心率的最大值為( )
A. B. C. D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com