A. | $\frac{π}{12}$ | B. | $-\frac{π}{12}$ | C. | $\frac{π}{4}$ | D. | 0 |
分析 利用輔助角公式化積,得到平移后的函數解析式,由題意可得3φ+$\frac{π}{4}$=k$π+\frac{π}{2}$,k∈Z,得到φ=$\frac{kπ}{3}+\frac{π}{12},k∈Z$,取k=0得到φ值.
解答 解:f(x)=sin3x+cos3x=$\sqrt{2}sin(3x+\frac{π}{4})$,
沿x軸向左平移φ個單位后,得y=$\sqrt{2}sin(3x+3φ+\frac{π}{4})$,
由y=$\sqrt{2}sin(3x+3φ+\frac{π}{4})$為偶函數,可得3φ+$\frac{π}{4}$=k$π+\frac{π}{2}$,k∈Z.
∴φ=$\frac{kπ}{3}+\frac{π}{12},k∈Z$.
取k=0,得φ=$\frac{π}{12}$.
故選:A.
點評 本題考查三角函數的圖象和性質,考查三角函數的圖象平移,是基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $m=\frac{n}{4000}$ | B. | $m=\frac{n}{1000}$ | C. | $m=\frac{n}{500}$ | D. | $m=\frac{n}{250}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com