6.某校為了解學(xué)生對正在進(jìn)行的一項(xiàng)教學(xué)改革的態(tài)度,從500名高一學(xué)生和400名高二學(xué)生中按分層抽樣的方式抽取了45名學(xué)生進(jìn)行問卷調(diào)查,結(jié)果可以分成以下三類:支持、反對、無所謂,調(diào)查結(jié)果統(tǒng)計(jì)如下:
 支持無所謂反對
高一年級18x2
高二年級106y
(1)(i)求出表中的x,y的值;
(ii)從反對的同學(xué)中隨機(jī)選取2人進(jìn)一步了解情況,求恰好高一、高二各1人的概率;
(2)根據(jù)表格統(tǒng)計(jì)的數(shù)據(jù),完成下面的2×2的列聯(lián)表,并判斷是否有90%的把握認(rèn)為持支持與就讀年級有關(guān).(不支持包括無所謂和反對)
 高一年級高二年級總計(jì)
支持 
 不支持
總計(jì)   
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.100.050.01
k02.7063.8416.635

分析 (1)(i)由題可得x=5,y=4;
(ii)利用列舉法確定基本事件,即可求恰好高一、高二各1人的概率;
(2)根據(jù)表格統(tǒng)計(jì)的數(shù)據(jù),完成下面的2×2的列聯(lián)表,求出K2,與臨界值比較,即可判斷是否有90%的把握認(rèn)為持支持與就讀年級有關(guān).

解答 解:(1)( i)由題可得x=5,y=4.
( ii)假設(shè)高一反對的編號為A1,A2,高二反對的編號為B1,B2,B3,B4
則選取兩人的所有結(jié)果為:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4).
∴恰好高一、高二各一人包含8個(gè)事件,
∴所求概率$p=\frac{8}{15}$.
(2)如圖列聯(lián)表:

高一年級高二年級總計(jì)
支持181028
不支持71017
總計(jì)252045
${k^2}=\frac{{45{{(180-70)}^2}}}{28×17×25×20}=2.288<2.706$
∴沒有90%的把握認(rèn)為持支持與就讀年級有關(guān).

點(diǎn)評 本題考查概率的計(jì)算,考查獨(dú)立性檢驗(yàn)知識的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC,根據(jù)下列條件,求三角形中其他邊和角的大。
(1)A=60°,B=45°,a=10;
(2)a=3,b=4,A=30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},則A∩B=(  )
A.{x|x<4}B.{x|x≤4}C.{x|1≤x<4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知-π<x<0,$sinx+cosx=\frac{1}{5}$.
(1)求sinx-cosx的值; 
(2)求$\frac{3si{n}^{2}\frac{x}{2}-2sin\frac{x}{2}cos\frac{x}{2}+co{s}^{2}\frac{x}{2}}{tanx+\frac{1}{tanx}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,△DEF中,已知DE=DF,點(diǎn)M在直線EF上從左到右運(yùn)動(dòng)(點(diǎn)M不與E、F重合),對于M的每一個(gè)位置(x,0),記△DEM的外接圓面積與△DMF的外接圓面積的比值為f(x),那么函數(shù)y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若f(x)=ex+sinx-cosx的導(dǎo)數(shù)為f'(x),則f'(0)等于( 。
A.2B.ln2+1C.ln2-1D.ln2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),則不等式(x-2017)3f(x-2017)-27>0的解集為(  )
A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中曲線部分是圓弧,則此幾何體的表面積為( 。
A.10+2πB.12+3πC.20+4πD.16+5π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如果將函數(shù)f(x)=sin(3x+φ)(-π<φ<0)的圖象向左平移$\frac{π}{12}$個(gè)單位所得到的圖象關(guān)于原點(diǎn)對稱,那么φ=-$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案