15.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,其中曲線部分是圓弧,則此幾何體的表面積為( 。
A.10+2πB.12+3πC.20+4πD.16+5π

分析 由三視圖知幾何體是上部為半圓柱體,下部為長(zhǎng)方體的組合體,結(jié)合圖中數(shù)據(jù)求出它的表面積.

解答 解:由三視圖知,
該幾何體是上部為半圓柱體,下部為長(zhǎng)方體的組合體,
其表面積為
S=S長(zhǎng)方體+S半圓柱
=(1×2×2+2×1×2+22)+(π•12+π•1•2)
=12+3π.
故選:B.

點(diǎn)評(píng) 本題主要考查了利用三視圖求幾何體表面積的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.方程${2^{{{log}_3}x}}=\frac{1}{4}$的解為(  )
A.9B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某校為了解學(xué)生對(duì)正在進(jìn)行的一項(xiàng)教學(xué)改革的態(tài)度,從500名高一學(xué)生和400名高二學(xué)生中按分層抽樣的方式抽取了45名學(xué)生進(jìn)行問(wèn)卷調(diào)查,結(jié)果可以分成以下三類:支持、反對(duì)、無(wú)所謂,調(diào)查結(jié)果統(tǒng)計(jì)如下:
 支持無(wú)所謂反對(duì)
高一年級(jí)18x2
高二年級(jí)106y
(1)(i)求出表中的x,y的值;
(ii)從反對(duì)的同學(xué)中隨機(jī)選取2人進(jìn)一步了解情況,求恰好高一、高二各1人的概率;
(2)根據(jù)表格統(tǒng)計(jì)的數(shù)據(jù),完成下面的2×2的列聯(lián)表,并判斷是否有90%的把握認(rèn)為持支持與就讀年級(jí)有關(guān).(不支持包括無(wú)所謂和反對(duì))
 高一年級(jí)高二年級(jí)總計(jì)
支持 
 不支持
總計(jì)   
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.隨著網(wǎng)絡(luò)營(yíng)銷(xiāo)和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購(gòu)物者進(jìn)行采訪,5名男性購(gòu)物者中有3名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店,5名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),3名傾向于選擇實(shí)體店.
(1)若從10名購(gòu)物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>1}\\{(\frac{1}{2})^{x},x≤1}\end{array}\right.$,則f(f(-$\frac{1}{2}$))=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,∠BAC=120°,AB=2,AC=3,若點(diǎn)D、E都在邊BC上,且∠BAD=∠CAE=30°,則$\frac{BD•BE}{CD•CE}$=$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的焦點(diǎn)到其漸近線的距離為( 。
A.2B.3C.$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.{an}是無(wú)窮數(shù)列,若{an}是二項(xiàng)式(1+2x)n(n∈N+)展開(kāi)式各項(xiàng)系數(shù)和,則$\underset{lim}{n→∞}$($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知拋物線C:y2=2px(p>0),直線$l:y=\sqrt{3}({x-1})$,l與C交于A,B兩點(diǎn),若$AB=\frac{16}{3}$,則p=( 。
A.8B.4C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案