11.若f(x)=ex+sinx-cosx的導(dǎo)數(shù)為f'(x),則f'(0)等于( 。
A.2B.ln2+1C.ln2-1D.ln2+2

分析 根據(jù)題意,由f(x)的解析式計算可得f′(x)=ex+cosx+sinx,將x=0代入計算可得f'(0),即可得答案.

解答 解:根據(jù)題意,f(x)=ex+sinx-cosx,則f′(x)=ex+cosx+sinx,
則f'(0)=e0+cos0+sin0=2;
故選:A.

點評 本題考查導(dǎo)數(shù)的計算,關(guān)鍵是正確計算函數(shù)f(x)的導(dǎo)數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點,O為坐標(biāo)原點,點P為橢圓上一點,$|OP|=\frac{{\sqrt{2}}}{4}a$,且|PF1|,|F1F2|,|PF2|成等比數(shù)列,則橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖畫的某幾何體的三視圖,網(wǎng)格紙上小正方形的邊長為1,則該幾何體的表面積為( 。
A.$144+2\sqrt{10}π$B.$144+({2\sqrt{10}-2})π$C.$128+2\sqrt{10}π$D.$128+({2\sqrt{10}-2})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{32}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$\frac{{64\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校為了解學(xué)生對正在進(jìn)行的一項教學(xué)改革的態(tài)度,從500名高一學(xué)生和400名高二學(xué)生中按分層抽樣的方式抽取了45名學(xué)生進(jìn)行問卷調(diào)查,結(jié)果可以分成以下三類:支持、反對、無所謂,調(diào)查結(jié)果統(tǒng)計如下:
 支持無所謂反對
高一年級18x2
高二年級106y
(1)(i)求出表中的x,y的值;
(ii)從反對的同學(xué)中隨機(jī)選取2人進(jìn)一步了解情況,求恰好高一、高二各1人的概率;
(2)根據(jù)表格統(tǒng)計的數(shù)據(jù),完成下面的2×2的列聯(lián)表,并判斷是否有90%的把握認(rèn)為持支持與就讀年級有關(guān).(不支持包括無所謂和反對)
 高一年級高二年級總計
支持 
 不支持
總計   
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若tanα=$\frac{1}{3}$,則sin4α-cos4α+6sin$\frac{α}{2}$cos$\frac{α}{2}$cosα=( 。
A.1B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,∠BAC=120°,AB=2,AC=3,若點D、E都在邊BC上,且∠BAD=∠CAE=30°,則$\frac{BD•BE}{CD•CE}$=$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=1nx.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求證:當(dāng)x>0時,$f(x)≥1-\frac{1}{x}$;
(Ⅲ)若x-1>a1nx對任意x>1恒成立,求實數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案