A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$ | D. | $\sqrt{3}$或$\frac{\sqrt{3}}{2}$ |
分析 2b-$\sqrt{3}$c=2acosC,利用正弦定理,求出A;sinC=$\frac{\sqrt{3}}{2}$,可得C=60°或120°,分類討論,可得三角形面積.
解答 解:∵2b-$\sqrt{3}$c=2acosC,
∴由正弦定理可得2sinB-$\sqrt{3}$sinC=2sinAcosC,
∴2sin(A+C)-$\sqrt{3}$sinC=2sinAcosC,
∴2cosAsinC=$\sqrt{3}$sinC,
∴cosA=$\frac{\sqrt{3}}{2}$∴A=30°,
∵sinC=$\frac{\sqrt{3}}{2}$,∴C=60°或120°
A=30°,C=60°,B=90°,a=1,∴△ABC的面積為$\frac{1}{2}×1×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
A=30°,C=120°,B=30°,a=1,∴△ABC的面積為$\frac{1}{2}×1×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
故選:C.
點評 本題考查正弦定理,考查三角形面積的計算,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$-\sqrt{2}$,$\sqrt{2}$] | B. | [$-\sqrt{2}$,1) | C. | [$-\sqrt{2}$,-1) | D. | (1,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25π | B. | 50π | C. | 100π | D. | 200π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com