18.某校興趣小組在如圖所示的矩形區(qū)域ABCD內(nèi)舉行機器人攔截挑戰(zhàn)賽,在E處按$\overrightarrow{EP}$方向釋放機器人甲,同時在A處按某方向釋放機器人乙,設(shè)機器人乙在Q處成功攔截機器人甲.若點Q在矩形區(qū)域ABCD內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失。
已知AB=18米,E為AB中點,機器人乙的速度是機器人甲的速度的2倍,比賽中兩機器人均按勻速直線運動方式行進,記$\overrightarrow{EP}$與$\overrightarrow{EB}$的夾角為θ.
(1)若θ=60°,AD足夠長,則如何設(shè)置機器人乙的釋放角度才能挑戰(zhàn)成功?(結(jié)果精確到0.1°)
(2)如何設(shè)計矩形區(qū)域ABCD的寬AD的長度,才能確保無論θ的值為多少,總可以通過設(shè)置機器人乙的釋放角度使機器人乙在矩形區(qū)域ABCD內(nèi)成功攔截機器人甲?

分析 (1)利用正弦定理,即可求解;
(2)以AB所在直線為x軸,AB中垂線為y軸,建平面直角坐標系,求出Q的軌跡方程,即可得出結(jié)論.

解答 解:(1)△AEQ中,AQ=2EQ,∠AEQ=120°…(2分)
由正弦定理,得:$\frac{EQ}{sin∠QAE}=\frac{AQ}{sin∠AEQ}$
所以$sin∠QAE=\frac{{\sqrt{3}}}{4}$…(4分)
所以$∠QAE=arcsin\frac{{\sqrt{3}}}{4}≈25.7°$
所以應(yīng)在矩形區(qū)域ABCD內(nèi),按照與$\overrightarrow{AB}$夾角為25.7°的向量$\overrightarrow{AQ}$方向釋放機器人乙,才能挑戰(zhàn)成功…(6分)
(2)以AB所在直線為x軸,AB中垂線為y軸,建平面直角坐標系,
設(shè)Q(x,y)(y≥0)…(8分)
由題意,知AQ=2EQ,所以$\sqrt{{{(x+9)}^2}+{y^2}}=2\sqrt{{x^2}+{y^2}}$
所以(x-3)2+y2=36(y≥0)…(11分)
即點Q的軌跡是以(3,0)為圓心,6為半徑的上半圓在矩形區(qū)域ABCD內(nèi)的部分
所以當AD≥6米時,能確保無論θ的值為多少,總可以通過設(shè)置機器人乙的釋放角度使機器人乙在矩形區(qū)域ABCD內(nèi)成功攔截機器人甲…(14分)

點評 本題考查軌跡方程,考查正弦定理的運用,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,若AC=5,BC=6,sinA=$\frac{3}{5}$,則角B的大小為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AB=2,AD=$\sqrt{2}$,PD⊥平面ABCD,E,F(xiàn)分別是CD,PB的中點.
求證:(Ⅰ)CF∥平面PAE;
(Ⅱ)平面PAE⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在△ABC中,tanA=$\frac{1}{3}$,tanC=$\frac{1}{2}$.
(Ⅰ)求角B的大;
(Ⅱ)設(shè)α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.數(shù)列{an}是等比數(shù)列,前n項和為Sn,若a1+a2=2,a2+a3=-1,則$\lim_{n→∞}{S_n}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(shè)集合A={x||x-2|≤3},B={x|x<t},若A∩B=∅,則實數(shù)t的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.要得到y(tǒng)=sin$\frac{x}{2}$的圖象,只需將函數(shù)y=cos($\frac{x}{2}$-$\frac{π}{4}$)的圖象向右平移$\frac{π}{2}$個單位.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a=1,2b-$\sqrt{3}$c=2acosC,sinC=$\frac{\sqrt{3}}{2}$,則△ABC的面積為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\sqrt{3}$或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.$(α為參數(shù)),M為C1上的動點,P點滿足$\overrightarrow{OP}=2\overrightarrow{OM}$,設(shè)點P的軌跡為曲線C2
(1)求C1,C2的極坐標方程;
(2)在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線$θ=\frac{π}{3}$與C1的異于極點的交點為A,與C2的異于極點的交點為B,求線段AB的長度.

查看答案和解析>>

同步練習冊答案