分析 由向量的垂直求出x的值,再根據(jù)向量的坐標(biāo)運算和向量的模計算即可.
解答 解:∵$\overrightarrow{a}$=(x,3),$\overrightarrow$=(2,-1),$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=2x-3=0,
∴x=$\frac{3}{2}$,
∴2$\overrightarrow{a}$+$\overrightarrow$=2($\frac{3}{2}$,3)+(2,-1)=(5,5),
∴|2$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$,
故答案為:5$\sqrt{2}$
點評 本題考查數(shù)量積判斷兩個向量的垂直關(guān)系及單位向量的概念,模的坐標(biāo)表示,解題的關(guān)鍵是熟練掌握向量中的基本公式,屬于較簡單的計算題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{e}{3})$ | B. | $(\frac{e}{3},{e^2})$ | C. | $(\frac{e}{3},\frac{e^2}{6})$ | D. | $(\frac{e}{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{\sqrt{3}}{3}$) | B. | (-∞,$\frac{\sqrt{3}}{3}$] | C. | (-∞,-$\frac{\sqrt{3}}{3}$) | D. | (-∞,-$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 5 | C. | 15 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{4}$個單位 | B. | 向右平移$\frac{π}{4}$個單位 | ||
C. | 向左平移$\frac{π}{2}$個單位 | D. | 向右平移$\frac{π}{2}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com