8.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{6}$),要得到g(x)=sin(2x+$\frac{2π}{3}$)的圖象,可將f(x)的圖象( 。
A.向左平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{2}$個單位D.向右平移$\frac{π}{2}$個單位

分析 由條件根據(jù)誘導公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:∵f(x)=sin(2x+$\frac{π}{6}$)=sin[2(x+$\frac{π}{12}$)],g(x)=sin(2x+$\frac{2π}{3}$)=sin[2(x+$\frac{π}{3}$)]=sin[2(x+$\frac{π}{12}$+$\frac{π}{4}$)],
∴將函數(shù)g(x)=sin(2x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個單位長度,可得有y=sin[2(x+$\frac{π}{4}$)+$\frac{π}{6}$]=sin(2x+$\frac{2π}{3}$)的圖象.
故選:A.

點評 本題主要考查誘導公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.設(shè)$\overrightarrow{a}$=(x,3),$\overrightarrow$=(2,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則|2$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若z=3+4i,則$\frac{z}{|z|}$=(  )
A.1B.-1C.$\frac{3}{5}$+$\frac{4}{5}$iD.$\frac{3}{5}$-$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x>0}\\{0,x=0}\\{{e}^{-x}-ax,x<0}\end{array}\right.$,若函數(shù)f(x)有5個零點,則實數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{1}{e}$)B.(-∞,-e)C.(e,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.($\sqrt{x}$-$\frac{2}{x}$+1)7的展開式中x3的系數(shù)為( 。
A.-1B.1C.-7D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知等差數(shù)列{an}滿足:a5=9,a1+a7=14,則數(shù)列{an}的通項公式為an=2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知復數(shù)z滿足$\frac{z}{2+ai}$=$\frac{2}{1+i}$(a∈R),若z的虛部為-3,則z的實部為( 。
A.-1B.1C.3D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x-$\frac{lnx}{m}$,m∈R,且m≠0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若m=-1,求證:函數(shù)F(x)=x-$\frac{f(x)}{x}$有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的中心在坐標原點O,過C的右頂點和右焦點分別作垂直于x軸的直線,交C的漸近線于A,B和M,N,若△OAB與△OMN的面積之比為1:4,則C的漸近線方程為(  )
A.y=±xB.$y=±\sqrt{3}x$C.y=±2xD.y=±3x

查看答案和解析>>

同步練習冊答案