2.比較lg2,(lg2)2,lg(lg2)的大小,其中最大的是lg2,最小的是lg(lg2).

分析 由lg2∈(0,1),0<(lg2)2<lg2,lg(lg2)<0,即可得出大小關(guān)系.

解答 解:∵lg2∈(0,1),0<(lg2)2<lg2,lg(lg2)<0,
∴最大的是lg2,最小的是lg(lg2).
故答案分別為:lg2,lg(lg2).

點評 本題考查了對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|y=lg(x-2)},集合B={x|y=$\sqrt{3-x}$},則A∩B=( 。
A.{x|x<2}B.{x|x≤2}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.角θ的頂點與原點重合,始邊與x軸非負半軸重合,終邊在直線y=2x上,則tan2θ=(  )
A.2B.-4C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.若a=$\sqrt{7}$,c=3,A=60°,則b=1或2,△ABC的面積S=$\frac{3\sqrt{3}}{4}$或$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=sin(ωx+ϕ)(ω>0),則f(x)的奇偶性(  )
A.與ω有關(guān),且與ϕ有關(guān)B.與ω有關(guān),但與ϕ無關(guān)
C.與ω?zé)o關(guān),且與ϕ無關(guān)D.與ω?zé)o關(guān),但與ϕ有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在平面直角坐標系xOy中,以x軸正半軸為始邊的銳角α與鈍角β的終邊與單位圓分別交于點A,B兩點,x軸正半軸與單位圓交于點M,已知${S_{△OAM}}=\frac{{\sqrt{5}}}{5}$,點B的縱坐標是$\frac{{\sqrt{2}}}{10}$,
(Ⅰ)求cos(α-β)的值;
(Ⅱ)求2α-β 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)y=f(x)是定義在R上的周期為2的奇函數(shù),則f(2017)=(  )
A.-2017B.0C.1D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某程序框圖如圖所示,若該程序運行后輸出的值是$\frac{11}{6}$,則整數(shù)a的值為(  )
A.a=3B.a=4C.a=5D.a=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.拋物線y2=2px(p>0)上一點M到焦點的距離是a(a>$\frac{p}{2}$),則點M到準線的距離是a.

查看答案和解析>>

同步練習(xí)冊答案