已知?jiǎng)狱c(diǎn)P與平面上兩定點(diǎn)連線的斜率的積為定值.
(1)試求動(dòng)點(diǎn)P的軌跡方程C.
(2)設(shè)直線與曲線C交于M、N兩點(diǎn),當(dāng)|MN|=時(shí),求直線l的方程.
(1)(2)

試題分析:(1)求動(dòng)點(diǎn)軌跡方程的步驟,一是設(shè)動(dòng)點(diǎn)坐標(biāo)二是列出動(dòng)點(diǎn)滿足的條件,三是化簡(jiǎn),,四是去雜,;(2)直線與橢圓位置關(guān)系,一般先分析其幾何性,再用代數(shù)進(jìn)行刻畫(huà).本題就是截得弦長(zhǎng)問(wèn)題,用韋達(dá)定理及弦長(zhǎng)公式可以解決. 由消去解得,又,所以有等式,解得,所以直線的方程為.
試題解析:解:(1)設(shè)點(diǎn)則依題意有         3分
整理得,由于,所以求得的曲線C的方程為
           5分
(2)由消去
解得分別為的橫坐標(biāo))       9分

解得              11分
所以直線的方程為           12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)重合,且該橢圓的長(zhǎng)軸長(zhǎng)為,是橢圓上的的動(dòng)點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿足:,直線的斜率之積為,求證:存在定點(diǎn)
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),點(diǎn)軸的射影為,連接 并延長(zhǎng)交橢圓于
點(diǎn),求證:以為直徑的圓經(jīng)過(guò)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項(xiàng)為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(t,0),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓C:=1,過(guò)點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A,B兩點(diǎn).在x軸上若存在定點(diǎn)P,使PM平分∠APB,則P的坐標(biāo)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

與橢圓C:=1共焦點(diǎn)且過(guò)點(diǎn)(1,)的雙曲線的標(biāo)準(zhǔn)方程為(  )
A.x2=1B.y2-2x2=1
C.=1D.-x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓的離心率為,則雙曲線的漸近線方程是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓上有一點(diǎn)P到左焦點(diǎn)的距離是4,則點(diǎn)p到右焦點(diǎn)的距離是(  ).
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓E=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓于AB兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為為其右焦點(diǎn),若設(shè)則橢圓離心率的取值范圍是   .

查看答案和解析>>

同步練習(xí)冊(cè)答案