14.已知數(shù)列{an},{bn},Sn為{an}的前n項和,且滿足Sn+1=Sn+an+2n+2,若a1=b1=2,bn+1=2bn+1,n∈N*
(I)求數(shù)列{an},{bn}的通項公式;
(II)令cn=$\frac{{3{a_n}}}{{n({{b_n}+1})}}$,求數(shù)列{cn}的前n項和Tn

分析 (Ⅰ)由Sn+1=Sn+an+2n+2,得Sn+1-Sn=an+2n+2,an+1-an=2n+2利用累加法可得an,由bn+1=2bn+1,n∈N*.∴得bn+1+1=2(bn+1),數(shù)列{bn+1}是以3為首項,公比為2的等比數(shù)列,即可求解;
(Ⅱ)由(Ⅰ)知cn=$\frac{{3{a_n}}}{{n({{b_n}+1})}}$=$\frac{3n(n+1)}{n×3×{2}^{n-1}}=\frac{n+1}{{2}^{n-1}}$,利用錯位相減法求和.

解答 解:(Ⅰ)由Sn+1=Sn+an+2n+2,得Sn+1-Sn=an+2n+2
∴an+1-an=2n+2
于是a2-a1=2×1+2
a3-a2=2×2+2
a4-a3=2×3+2

an-an-1=2×(n-1)+2
以上各式相加得an-a1=2(1+2+…+n-1)+2(n-1)
∴${a}_{n}=2×\frac{(1+n-1)(n-1)}{2}+2(n-1)+2$=n2+n
∵bn+1=2bn+1,n∈N*.∴bn+1+1=2(bn+1),
又∵b1+1=3,∴數(shù)列{bn+1}是以3為首項,公比為2的等比數(shù)列.
∴$_{n}+1=3×{2}^{n-1}$,∴$_{n}=3•{2}^{n-1}-1$
(Ⅱ)由(Ⅰ)知cn=$\frac{{3{a_n}}}{{n({{b_n}+1})}}$=$\frac{3n(n+1)}{n×3×{2}^{n-1}}=\frac{n+1}{{2}^{n-1}}$,
∴${T}_{n}=\frac{2}{{2}^{0}}+\frac{3}{{2}^{1}}+\frac{4}{{2}^{2}}+…+\frac{n+′}{{2}^{n-1}}$…①
 $\frac{1}{2}{T}_{n}$=$\frac{2}{{2}^{1}}+\frac{3}{{2}^{2}}+…+\frac{n}{{2}^{n-1}}+\frac{n+1}{{2}^{n}}$…②
①-②得$\frac{1}{2}{T}_{n}$=2+$\frac{1}{{2}^{1}}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}}-\frac{n+1}{{2}^{n}}$=2+$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n-1}]}{1-\frac{1}{2}}-\frac{n+1}{{2}^{n}}=3-\frac{n+3}{{2}^{n}}$,
∴${T}_{n}=6-\frac{2n+6}{{2}^{n}}$.

點評 本題考查了利用數(shù)列遞推式求和,考查了累加法求數(shù)列通項、錯位相減法求和,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,已知⊙C:x2+(y-2)2=1,點M在x軸正半軸上,過點M作⊙C的兩條切線,切點分別為A,B.
(1)若點M的坐標為(2,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ex+ax,曲線y=f(x)在點(0,f(0))處的切線方程為y=1.
(1)求實數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若b>0,f(x)≥(b-1)x+c,求b2c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.己知i是虛數(shù)單位,$\overline z$是z的共軛復(fù)數(shù),$({2-i})\overline z=3-4i$,則z的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.斜率為2的直線l與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于不同的兩點,且這兩個交點在x軸上的射影恰好是橢圓的兩個焦點,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ x-y+1≥0\end{array}\right.$,則目標函數(shù)z=3|x|+|y-2|的取值范圍是( 。
A.[1,8]B.[3,8]C.[1,3]D.[1,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},則集合A∩B=( 。
A.{1}B.{(1,3)}C.{(1,2)}D.{2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.二元一次不等式2x-y>0表示的區(qū)域(陰影部分)是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線${x}^{2}-\frac{{y}^{2}}{3}=1$的離心率為$\frac{m}{2}$,且拋物線y2=mx的焦點為F,點P(3,y0)(y0>0)在此拋物線上,M為線段PF的中點,則點M到該拋物線的準線的距離為( 。
A.3B.2C.$\frac{5}{2}$D.1

查看答案和解析>>

同步練習冊答案