9.斜率為2的直線l與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于不同的兩點,且這兩個交點在x軸上的射影恰好是橢圓的兩個焦點,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

分析 由橢圓的焦點坐標(biāo),則兩個交點分別為(-c,-2c),(c,2c),代入橢圓方程,根據(jù)橢圓的性質(zhì)及離心率公式,即可求得橢圓的離心率.

解答 解:橢圓的焦點在x軸上,F(xiàn)1(-c,0),F(xiàn)2(c,0),則兩個交點分別為(-c,-2c),(c,2c),
代入橢圓$\frac{{c}^{2}}{{a}^{2}}+\frac{4{c}^{2}}{^{2}}=1$,整理得:c2(b2+4a2)=a2b2
∵b2=a2-c2,整理得:c4-6a2c2+a4=0,
由e=$\frac{c}{a}$,整理得:e4-6e2+1=0,解得:e2=3±2$\sqrt{2}$,
∵0<e<1,則e2=3-2$\sqrt{2}$=($\sqrt{2}$-1)2,
∴e=$\sqrt{2}$-1,
故選B.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查橢圓的離心率公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)證明:數(shù)列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差數(shù)列,并求{an}的通項公式;
(2)若數(shù)列{bn}滿足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若對一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.計算$C_5^4+C_6^4+C_7^4+C_8^4$等于(  )
A.125B.126C.120D.132

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市對全市10萬名市民進行了漢字聽寫測試,調(diào)查數(shù)據(jù)顯示市民的成績服從正態(tài)分布N(168,16).現(xiàn)從某社區(qū)居民中隨機抽取50名市民進行聽寫測試,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第一組[160,164),第二組[164,168),…,第六組[180,184),如圖是按上述分組方法得到的頻率分布直方圖.
(1)試評估該社區(qū)被測試的50名市民的成績在全市市民中成績的平均狀況及這50名市民成績在172個以上(含172個)的人數(shù);
(2)在這50名市民中成績在172個以上(含172個)的人中任意抽取2人,該2人中成績排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若η~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法中正確的是(  )
A.當(dāng)a>1時,函數(shù)y=ax是增函數(shù),因為2>l,所以函數(shù)y=2x是增函數(shù).這種推理是合情推理
B.在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c,則a∥c,將此結(jié)論放到空間中也是如此.這種推理是演繹推理
C.若分類變量X與Y的隨機變量K2的觀測值k越小,則兩個分類變量有關(guān)系的把握性越小
D.$\int_{-1}^1{{x^3}dx=\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an},{bn},Sn為{an}的前n項和,且滿足Sn+1=Sn+an+2n+2,若a1=b1=2,bn+1=2bn+1,n∈N*
(I)求數(shù)列{an},{bn}的通項公式;
(II)令cn=$\frac{{3{a_n}}}{{n({{b_n}+1})}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知角α的終邊過點A(3,4),則cos(π+2α)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過直線x+y+1=0與2x-y-4=0的交點,且一個方向向量$\overrightarrow v=({-1,3})$的直線方程是(  )
A.3x+y-1=0B.x+3y-5=0C.3x+y-3=0D.x+3y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.隨著大數(shù)據(jù)統(tǒng)計的廣泛應(yīng)用,給人們的出行帶來了越來越多的方便.郭叔一家計劃在8月11日至8月20日暑假期間游覽上海Disney主題公園.通過上網(wǎng)搜索旅游局的統(tǒng)計數(shù)據(jù),該Disney主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比,40%以下為舒適,40%-60%為一般,60%以上為擁擠)情況如圖所示.郭叔預(yù)計隨機的在8月11日至8月19日中的某一天到達該主題公園,并游覽2天.

(Ⅰ)求郭叔連續(xù)兩天都遇上擁擠的概率;
(Ⅱ)設(shè)X是郭叔游覽期間遇上舒適的天數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(直接寫出結(jié)論不要求證明,計算)

查看答案和解析>>

同步練習(xí)冊答案