【題目】某賓館在裝修時(shí),為了美觀,欲將客房的窗戶設(shè)計(jì)成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個(gè)區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計(jì)劃將矩形ABCD區(qū)域設(shè)計(jì)為可推拉的窗口.
(1)若窗口ABCD為正方形,且面積大于 m2(木條寬度忽略不計(jì)),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.
【答案】
(1)解:設(shè)一根木條長為xcm,則正方形的邊長為2 = ,
∵SABCD> ,
∴4﹣x2> ,
∴x< ,
∵四根木條將圓分成9個(gè)區(qū)域,
∴x> ,
∴4 <x<2 ;
(2)解:設(shè)AB所在木條長為am,CD所在木條長為bm,
由條件,2a+2b=6,則a+b=3,
∵a,b∈(0,2),
∴b=3﹣a∈(0,2),∴a,b∈(1,2).
∵AB=2 ,BD=2 ,
∴SABCD=4 = ≤ ≤ = ,
當(dāng)且僅當(dāng)a=b= ∈(1,2)時(shí),SABCD= ,
答:窗口ABCD面積的最大值為
【解析】(1)求出正方形的邊長,可得正方形的面積,利用面積大于 m2 , 即可求四根木條總長的取值范圍;(2)設(shè)AB所在木條長為am,CD所在木條長為bm,求出AB,BD,可得窗口ABCD面積,利用基本不等式求窗口ABCD面積的最大值.
【考點(diǎn)精析】利用基本不等式在最值問題中的應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(x+4)=f(x),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( )x﹣6,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍是( )
A.(1,2)
B.(2,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察以下各等式:
tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,
tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,
tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.
分析上述各式的共同特點(diǎn),猜想出表示的一般規(guī)律,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導(dǎo)函數(shù)),若方程g(f(x))=0有四個(gè)不等的實(shí)根,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C1:(x﹣1)2+y2=2,圓C2:(x﹣m)2+(y+m)2=m2 . 圓C2上存在點(diǎn)P滿足:過點(diǎn)P向圓C1作兩條切線PA,PB,切點(diǎn)為A,B,△ABP的面積為1,則正數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 .若直線l與曲線C交于A,B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間(單位:h)的樣本數(shù)據(jù).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4 h的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4 h,請(qǐng)完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”?
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過4h | |||
每周平均體育運(yùn)動(dòng)時(shí)間超過4h | |||
總計(jì) |
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:,q:.
(1)若p是q充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若“非p”是“非q”的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非空集合M滿足M{0,1,2,…,n}(n≥2,n∈N+).若存在非負(fù)整數(shù)k(k≤n),使得當(dāng)a∈M時(shí),均有2k﹣a∈M,則稱集合M具有性質(zhì)P.設(shè)具有性質(zhì)P的集合M的個(gè)數(shù)為f(n).
(1)求f(2)的值;
(2)求f(n)的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com