6.如圖,在直二面角的棱上有A、B兩點,直線AC、BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則直線AB與CD所成角的余弦值為(  )
A.$\frac{{2\sqrt{29}}}{29}$B.$\frac{{\sqrt{29}}}{29}$C.$\frac{{5\sqrt{29}}}{29}$D.$\frac{{2\sqrt{203}}}{29}$

分析 建立空間坐標(biāo)系,求出兩條異面直線的方向向量,代入夾角公式,可得答案.

解答 解:以A為坐標(biāo)原點,建立如圖所示的坐標(biāo)系,

則A(0,0,0),B(4,0,0),C(0,0,6),D(4,-8,0),
故$\overrightarrow{AB}$=(4,0,0),$\overrightarrow{CD}$=(4,-8,-6),
故直線AB與CD所成角的余弦值為$\frac{|\overrightarrow{AB}•\overrightarrow{CD}|}{\left|\overrightarrow{AB}\right|•\left|\overrightarrow{CD}\right|}$=$\frac{2\sqrt{29}}{29}$,
故選:A.

點評 本題考查的知識點是空間中直線與直線的位置關(guān)系,異面直線及其所成的角,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍
(3)若x∈[t,t+2],試求y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖程序,如果輸入n是429,則該程序輸出的是942.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sin(2x+ϕ)+1的圖象過點(0,0),且$-\frac{π}{2}<ϕ<0$.
(Ⅰ)求ϕ的值;
(Ⅱ)求函數(shù)f(x)的最大值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,a,b,c分別是角A,B,C的對邊,若tanA=3,cosC=$\frac{\sqrt{5}}{5}$,c=4.
(1)求角B;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若將函數(shù)f(x)=sin(2x+$\frac{π}{4}$)的圖象向右平移φ單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{3π}{8}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法中,正確的是( 。
A.第二象限的角是鈍角B.第三象限的角必大于第二象限的角
C.方程$sinx-cosx=\frac{1}{2}$無解D.方程sinx+cosx=2無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示的程序框圖,運行程序后,輸出的結(jié)果等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,且an+Sn=n.
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)設(shè)bn=lo${g}_{\frac{1}{2}}$(1-an)時,求數(shù)列{$\frac{1}{{_{n}b}_{n+2}}$}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案