6.函數(shù)y=3sin4x+$\sqrt{3}$cos4x的最大值是( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

分析 利用兩角和公式對函數(shù)解析式化簡,根據(jù)正弦函數(shù)圖象與性質(zhì)求得函數(shù)的最大值.

解答 解:y=3sin4x+$\sqrt{3}$cos4x=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$sin4x+$\frac{1}{2}$cos4x)=2$\sqrt{3}$sin(4x+$\frac{π}{6}$),
可得:ymax=2$\sqrt{3}$.
故選:B.

點評 本題主要考查了兩角和與差的正弦函數(shù),三角函數(shù)圖象與性質(zhì).考查了學生對三角函數(shù)基礎知識的綜合應用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知{an}是等差數(shù)列,a2=-1,a8=5,則數(shù)列{an}的前9項和S9為(  )
A.18B.27C.24D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若復數(shù)z滿足z=1+2i,則|z|=(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求適合下列條件的標準方程:
(1)焦點在x軸上,與橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1具有相同的離心率且過點(2,-$\sqrt{3}$)的橢圓的標準方程;
(2)焦點在x軸上,頂點間的距離為6,漸近線方程為y=±$\frac{1}{3}$x的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知正實數(shù)x,y滿足x+y=2,則x+$\sqrt{{x^2}+{y^2}-2x+1}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(m,1).若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,則實數(shù)m=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知f(x)=|ax-1|(a∈R),不等式f(x)>5的解集為{x|x<-3或x>2}.
(1)求a的值;
(2)解不等式f(x)-f($\frac{x}{2}$)≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥1的解集A滿足[-1,1]⊆A.
(1)求實數(shù)m的取值范圍B;
(2)若a,b,c∈(0,+∞),m0為B中的最小元素且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=m0,求證:a+2b+3c≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖所示,設小矩形的長、寬各為a,b,現(xiàn)把四個同樣的矩形拼接成正方形后,分析其中陰影部分矩形面積之和與正方形面積之間的關(guān)系,并用不等式表達出來.

查看答案和解析>>

同步練習冊答案