A. | $\frac{3}{2}$ | B. | $\frac{4}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 利用正弦定理化簡已知等式,結(jié)合sinA≠0,sinB≠0,可得cosA=$\frac{3}{4}$,又c=2b,利用余弦定理即可計(jì)算得解的答案.
解答 解:由2bsin2A=3asinB,利用正弦定理可得:4sinBsinAcosA=3sinAsinB,
由于:sinA≠0,sinB≠0,
可得:cosA=$\frac{3}{4}$,
又c=2b,
可得:a2=b2+c2-2bccosA=b2+4b2-2b•2b•$\frac{3}{4}$=2b2,
則$\frac{a}$=$\sqrt{2}$.
故選:C.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{5}{2}]$ | B. | (2,4) | C. | $(\frac{5}{2},4)$ | D. | (1,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
氣溫(℃) | 18 | 13 | 10 | -1 |
杯數(shù) | 24 | 34 | 38 | 64 |
A. | 70 | B. | 50 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{9}{4}$,-2] | B. | [-1,0] | C. | (-∞,-2] | D. | (-$\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,2x0+1>0 | B. | ?x∈R,2x+1>0 | C. | ?x0∈R,2x0+1≤0 | D. | ?x∈R,2x+1≥0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com