A. | 4 | B. | 2$\sqrt{7}$ | C. | 4$\sqrt{7}$ | D. | 4$\sqrt{14}$ |
分析 作可行域,平移目標直線可得直線過點B(1,4)時,目標函數(shù)取最大值,可得ab=16,由基本不等式可得.
解答 解:作出約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,所對應(yīng)的可行域,(如圖陰影)
變形目標函數(shù)可得y=abx-z,其中a>0,b>0,
經(jīng)平移直線y=abx可知,當直線經(jīng)過點A(0,2)或B(1,4)時,
目標函數(shù)取最大值,顯然A不合題意,
∴ab+4=18,即ab=14,
由基本不等式可得2a+b≥2$\sqrt{2ab}$=4$\sqrt{7}$,當且僅當2a=b=2$\sqrt{7}$時取等號,
故選:C.
點評 本題考查線性規(guī)劃,涉及基本不等式的應(yīng)用和分類討論的思想,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x0與g(x)=1 | B. | f(x)=x與g(x)=$\frac{{x}^{2}}{x}$ | ||
C. | f(x)=x2-1與g(x)=x2+1 | D. | f(x)=|x|與g(x)=$\sqrt{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 22 | B. | -33 | C. | -11 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=sin(\frac{πx}{2}+1)$ | B. | y=sin(2πx+1) | C. | $y=cos\frac{πx}{2}$ | D. | $y=-cos\frac{πx}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com