18.定義一種運算:a?$b=\left\{\begin{array}{l}{a}&{a≥b}\\&{a<b}\end{array}\right.$已知函數(shù)f(x)=2x?(3-x),那么函數(shù)y=f(x)的圖象大致是( 。
A.B.C.D.

分析 化簡函數(shù)的解析式,然后去判斷函數(shù)的圖象即可.

解答 解:a?$b=\left\{\begin{array}{l}{a}&{a≥b}\\&{a<b}\end{array}\right.$,函數(shù)f(x)=2x?(3-x)=$\left\{\begin{array}{l}{{2}^{x},x≥1}\\{3-x,x<1}\end{array}\right.$,
函數(shù)的圖象為:
故選:A.

點評 本題考查函數(shù)的解析式的求法,函數(shù)的圖象的判斷,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知拋物線y2=2x上兩點A,B滿足A在x軸上方,B在x軸下方,O是坐標原點且$\overrightarrow{OA}$•$\overrightarrow{OB}=3$,則線段AB中點M的坐標滿足方程( 。
A.y2=2x-12B.y2=2x+4C.y2=x+1D.y2=x-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={1,3,m2},B={1,m},A∪B=A,則m=(  )
A.3B.0或3C.1或0D.1或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.方程|x2-2x|=a2+1(a∈R+)的解的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設變量x,y滿足約束條件2x-y-2≤0,x-y≥0,則z=3x-2y的最小值為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線斜率為2,則該雙曲線的離心率為(( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$D.$\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設條件p:“|x-a|≤1”,條件q:“(x-2)(x-3)≤0”
(1)當a=0時,判斷p是q的什么條件;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.化簡求值:
(1)${log_3}^{\sqrt{27}}+{0.064^{\frac{1}{3}}}-{({-2})^0}+{16^{\frac{3}{4}}}$;
(2)已知${2^x}=3,{8^{\frac{y}{3}}}=9$,求2x-2y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是①③④⑤(寫出所有正確命題的編號).
①當$0<CQ<\frac{1}{2}$時,S為四邊形;
②當$\frac{3}{4}<CQ<1$時,S為六邊形;
③當$CQ=\frac{1}{2}$時,S為等腰梯形;
④當CQ=1時,S的面積為$\frac{{\sqrt{6}}}{2}$; 
⑤當$CQ=\frac{3}{4}$時,S與C1D1的交點R滿足${C_1}R=\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案