11.若隨機變量X~B(n,0.4),且EX=2,則P(X=1)的值是(  )
A.2×0.44B.2×0.64C.3×0.44D.3×0.64

分析 根據(jù)隨機變量符合二項分布,根據(jù)期望值求出n的值,寫出對應(yīng)的自變量的概率的計算公式,代入自變量等于1時的值.

解答 解:∵隨機變量X~B(n,0.4),E(X)=2,
∴0.4n=2,
∴n=5
∴P(X=1)=C51(0.4)1(0.6)4=2×0.64
故選B.

點評 本題考查二項分布,本題解題的關(guān)鍵是寫出變量對應(yīng)的概率的表示式和期望的表示式,根據(jù)期望值做出n的值,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出的S的值為( 。
A.-1B.$\frac{2}{3}$C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知sin($\frac{3π}{2}$-x)=$\frac{5}{13}$,則cos(π-x)=( 。
A.-$\frac{5}{13}$B.$\frac{5}{13}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,|$\overrightarrow{AB}$|=c,|$\overrightarrow{AC}$|=b.
(Ⅰ)若b=3,c=5,sinA=$\frac{4}{5}$,求|$\overrightarrow{BC}$|;
(Ⅱ)若|$\overrightarrow{BC}$|=2,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為$\frac{π}{3}$,則當|$\overrightarrow{AB}$|取到最大值時,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)上的一點M(2,y0)到焦點F的距離等于3.
(1)求拋物線C的方程;
(2)若過點D(3,0)的直線l與拋物線C相交于A,B兩點,求△ABF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合{(x,y)|$\left\{\begin{array}{l}{2x+y-4≤0}\\{x+y≥0}\\{x-y≥0}\end{array}\right.$}表示的平面區(qū)域為Ω,若在區(qū)域Ω內(nèi)任取一點P(x,y),則點P的坐標滿足不等式x2+y2≤3的概率為$\frac{9}{64}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)定義在R上,若f(x)的圖象關(guān)于y軸對稱,且對任意的實數(shù)x恒有f(x+2)=-f(x),則f(2017)的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,AA1⊥AC,M、N分別為棱AA1、CC1的中點.
(1)求證:直線MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取線段C1D1的中點Q,求二面角Q-MD-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,點M是PD的中點,作ME⊥PC,交PC于點E.
(1)求證:PB∥平面MAC;
(2)求證:PC⊥平面AEM;
(3)求二面角A-PC-D的大。

查看答案和解析>>

同步練習(xí)冊答案