【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)是函數(shù)的極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,,若,,使不等式恒成立,求的取值范圍.
【答案】(1);(2)在上單調(diào)遞增,在上單調(diào)遞減;(3)
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),再求出,,由導(dǎo)數(shù)得幾何意義知切線的斜率為且過(guò)點(diǎn),即可寫(xiě)出直線的點(diǎn)斜式方程;(2)由是函數(shù)的極值點(diǎn)可知,求出,令結(jié)合定義域即可求出函數(shù)的單調(diào)區(qū)間;(3)令,則題意等價(jià)于,利用分析的單調(diào)性從而求出最小值為4,所以使得函數(shù),由在有解即可求出的取值范圍.
(1)的定義域?yàn)?/span>,時(shí),,,
,,所以切線方程為,即.
(2),
是函數(shù)的極值點(diǎn),,可得,
所以,令,即,
解得,結(jié)合定義域可知在上單調(diào)遞增,在上單調(diào)遞減.
(3)令,,,
使得恒成立,等價(jià)于,
,
因?yàn)?/span>,所以,,即,
所以在上單調(diào)遞增,,
即使得函數(shù),即轉(zhuǎn)化為在有解,
,所以,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線系(),則下列命題中是真命題的個(gè)數(shù)是( 。
①存在一個(gè)圓與所有直線相交;
②存在一個(gè)圓與所有直線不相交;
③存在一個(gè)圓與所有直線相切;
④中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn);
⑤不存在定點(diǎn)不在中的任一條直線上;
⑥對(duì)于任意整數(shù),存在正邊形,其所有邊均在中的直線上;
⑦中的直線所能圍成的正三角形面積都相等.
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)求的單調(diào)區(qū)間;
(2)在函數(shù)的圖象上取兩個(gè)不同的點(diǎn),令直線AB的斜率
為k,則在函數(shù)的圖象上是否存在點(diǎn),且,使得?若存
在,求A,B兩點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)若函數(shù)在上有且僅有一個(gè)零點(diǎn),
①求證:此零點(diǎn)是的極值點(diǎn);
②求證:.
(本題可能會(huì)用到的數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A.若隨機(jī)變量服從正態(tài)分布,,則;
B.已知直線平面,直線平面,則“”是“”的必要不充分條件;
C.若隨機(jī)變量服從二項(xiàng)分布:,則;
D.已知直線經(jīng)過(guò)點(diǎn),則的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解觀眾對(duì)某綜藝節(jié)目的評(píng)價(jià)情況,欄目組隨機(jī)抽取了名觀眾進(jìn)行評(píng)分調(diào)查(滿分分),并統(tǒng)計(jì)得到如圖所示的頻率分布直方圖,以下說(shuō)法錯(cuò)誤的是( )
A.參與評(píng)分的觀眾評(píng)分在的有人
B.觀眾評(píng)分的眾數(shù)約為分
C.觀眾評(píng)分的平均分約為分
D.觀眾評(píng)分的中位數(shù)約為分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知項(xiàng)數(shù)為的數(shù)列滿足如下條件:①;②.若數(shù)列滿足,其中,則稱為的“伴隨數(shù)列”.
(1)數(shù)列1,3,5,7,9是否存在“伴隨數(shù)列”,若存在,寫(xiě)出其“伴隨數(shù)列”;若不存在,請(qǐng)說(shuō)明理由;
(2)若為的“伴隨數(shù)列”,證明:;
(3)已知數(shù)列存在“伴隨數(shù)列”,且,,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:(),過(guò)原點(diǎn)的兩條直線和分別與交于點(diǎn)、和、,得到平行四邊形.
(1)當(dāng)為正方形時(shí),求該正方形的面積.
(2)若直線和關(guān)于軸對(duì)稱,上任意一點(diǎn)到和的距離分別為和,當(dāng)為定值時(shí),求此時(shí)直線和的斜率及該定值.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com