【題目】設(shè)直線系),則下列命題中是真命題的個(gè)數(shù)是( 。

①存在一個(gè)圓與所有直線相交;

②存在一個(gè)圓與所有直線不相交;

③存在一個(gè)圓與所有直線相切;

中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn);

⑤不存在定點(diǎn)不在中的任一條直線上;

⑥對(duì)于任意整數(shù),存在正邊形,其所有邊均在中的直線上;

中的直線所能圍成的正三角形面積都相等.

A.3B.4C.5D.6

【答案】B

【解析】

根據(jù)已知可知,直線系都為以為圓心,以1為半徑的圓的切線,即可根據(jù)相關(guān)知識(shí),逐個(gè)判斷各命題的真假.

根據(jù)直線系)得到,

所有直線都為圓心為,半徑為1的圓的切線.

對(duì)于①,可取圓心為,半徑為2的圓,該圓與所有直線相交,所以①正確;

對(duì)于②,可取圓心為,半徑為的圓,該圓與所有直線不相交,所以②正確;

對(duì)于③,可取圓心為,半徑為1的圓,該圓與所有直線相切,所以③正確;

對(duì)于④,所有的直線與一個(gè)圓相切,沒有過(guò)定點(diǎn),所以④錯(cuò)誤;

對(duì)于⑤,存在不在中的任一條直線上,所以⑤錯(cuò)誤;

對(duì)于⑥,可取圓的外接正三角形,其所有邊均在中的直線上,所以⑥正確;

對(duì)于⑦,可以在圓的三等分點(diǎn)做圓的三條切線,把其中一條切線平移到過(guò)另外兩個(gè)點(diǎn)中點(diǎn)時(shí),也為正三角形,但是它與圓的外接正三角形的面積不相等,所以⑦錯(cuò)誤;

故①②③⑥正確,④⑤⑦錯(cuò),所以真命題的個(gè)數(shù)為4個(gè).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷的奇偶性,并說(shuō)明理由;

2)當(dāng)時(shí),若,求的值;

3)若,且對(duì)任意不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的首項(xiàng)為p,公差為,對(duì)于不同的自然數(shù),直線軸和指數(shù)函數(shù)的圖象分別交于點(diǎn)(如圖所示),記的坐標(biāo)為,直角梯形、的面積分別為,一般地記直角梯形的面積為.

1)求證:數(shù)列是公比絕對(duì)值小于1的等比數(shù)列;

2)設(shè)的公差,是否存在這樣的正整數(shù),構(gòu)成以為邊長(zhǎng)的三角形?并請(qǐng)說(shuō)明理由;

3)設(shè)的公差為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無(wú)窮等比數(shù)列各項(xiàng)的和?并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是兩個(gè)垃圾中轉(zhuǎn)站,的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個(gè)垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個(gè)要求(、、可看成三個(gè)點(diǎn)):①垃圾發(fā)電廠到兩個(gè)垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)到直線的距離要盡可能大).現(xiàn)估測(cè)得、兩個(gè)中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè)

1)求(用的表達(dá)式表示);

2)垃圾發(fā)電廠該如何選址才能同時(shí)滿足上述要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)圖象上不同兩點(diǎn),,處的切線的斜率分別是,,規(guī)定叫曲線在點(diǎn)與點(diǎn)之間的“彎曲度”,給出以下命題:

1)函數(shù)圖象上兩點(diǎn)的橫坐標(biāo)分別為1,2,則

2)存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);

3)設(shè)點(diǎn)是拋物線,上不同的兩點(diǎn),則

4)設(shè)曲線上不同兩點(diǎn),,,且,若恒成立,則實(shí)數(shù)的取值范圍是;

以上正確命題的序號(hào)為__(寫出所有正確的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)的圖象向左平移1個(gè)單位后關(guān)于y軸對(duì)稱,當(dāng)x2x11時(shí),[fx2)﹣fx1]x2x1)<0恒成立,設(shè)af),bf2),cf3),則a、b、c的大小關(guān)系為(  )

A.cabB.cbaC.acbD.bac

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列六個(gè)命題:

1)若,則函數(shù)的圖像關(guān)于直線對(duì)稱.

2的圖像關(guān)于直線對(duì)稱.

3的反函數(shù)與是相同的函數(shù).

4無(wú)最大值也無(wú)最小值.

5的最小正周期為.

6有對(duì)稱軸兩條,對(duì)稱中心有三個(gè).

則正確命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2是函數(shù)的極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;

3)在(2)的條件下,,若,使不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案