6.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知cosC=$\frac{1}{4}$,a=1,c=2,則△ABC的面積為( 。
A.$\frac{\sqrt{15}}{4}$B.$\frac{\sqrt{15}}{8}$C.$\frac{1}{4}$D.$\frac{1}{8}$

分析 由題意cosC=$\frac{1}{4}$,a=1,c=2,余弦定理求解b,正弦定理在求解sinB,那么△ABC的面積$S=\frac{1}{2}acsinB$即可.

解答 解:由題意cosC=$\frac{1}{4}$,a=1,c=2,
那么:sinC=$\frac{\sqrt{15}}{4}$,
cosC=$\frac{1}{4}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,解得b=2.
那么△ABC的面積S=$\frac{1}{2}absinC$=$\frac{\sqrt{15}}{4}$.
或者:由$\frac{c}{sinC}=\frac{sinB}$,可得sinB=$\frac{\sqrt{15}}{4}$,
那么△ABC的面積$S=\frac{1}{2}acsinB$=$\frac{1}{2}×2×1×\frac{\sqrt{15}}{4}=\frac{\sqrt{15}}{4}$
故選A

點評 本題主要考查了余弦定理,正弦定理的運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=sin(2x+θ)+\sqrt{3}cos(2x+θ)$為奇函數(shù),且在$[-\frac{π}{4},0]$上為減函數(shù)的θ值可以是( 。
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)$f(x)=\sqrt{ln(x+1)+2x-a}$(a∈R).若存在x0∈[0,1]使得f(f(x0))=x0,則a的取值范圍是[-1,2+ln2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義2×2矩陣$[\begin{array}{l}{a_1}\\{a_3}\end{array}\right.\left.\begin{array}{l}{a_2}\\{a_4}\end{array}]={a_1}{a_4}-{a_2}{a_3}$,若$f(x)=[{\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}}]$,則f(x)(  )
A..圖象關(guān)于(π,0)中心對稱B.圖象關(guān)于直線$x=\frac{π}{2}$對稱
C.在區(qū)間$[-\frac{π}{6},0]$上單調(diào)遞增D.周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ex-ax在(-∞,0)上是減函數(shù),則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,已知圓C的方程為x2+y2=1,P是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1上的一點,過P作圓的兩條切線,切點為A,B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍為( 。
A.[0,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.[1,$\frac{3}{2}$]D.[$\frac{3}{2}$,$\frac{9}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在平行四邊形ABCD中,|$\overrightarrow{AB}$|=8,|$\overrightarrow{AD}$|=6,N為DC的中點,$\overrightarrow{BM}$=2$\overrightarrow{MC}$,則$\overrightarrow{AM}$•$\overrightarrow{NM}$=(  )
A.48B.36C.24D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖網(wǎng)格紙上的小正方形邊長為1,粗線是一個三棱錐的三視圖,則該三棱錐的外接球表面積為(  )
A.48πB.36πC.24πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品至少有一件是次品”,則下列結(jié)論正確的是( 。
A.A與B互斥B.任何兩個均互斥C.B與C互斥D.任何兩個均對立

查看答案和解析>>

同步練習(xí)冊答案