(10分)如圖,A,B,C,D四點(diǎn)在同一圓上,AD的延長(zhǎng)線與BC的延長(zhǎng)線交于E點(diǎn),且EC=ED。
(1)證明:CD//AB;(2)延長(zhǎng)CD到F,延長(zhǎng)DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點(diǎn)共圓。
(1)EC=ED,∠EDC=∠ECD,A,B,C,D四點(diǎn)共圓,∠EDC=∠EBA,CD∥AB
(2)AE=BE,EF=EG,故∠EFD=∠EGC,∠FED=∠GEC,△EFA≌△EGB,故∠FAE=∠GBE,CD∥AB,∠FAB=∠GBA,所以∠AFG+∠GBA=180°故A,B.G,F(xiàn)四點(diǎn)共圓
【解析】
試題分析:(I)因?yàn)镋C=ED,
所以∠EDC=∠ECD
因?yàn)锳,B,C,D四點(diǎn)在同一圓上,
所以∠EDC=∠EBA
故∠ECD=∠EBA,
所以CD∥AB
(Ⅱ)由(I)知,AE=BE,
因?yàn)镋F=EG,故∠EFD=∠EGC
從而∠FED=∠GEC
連接AF,BG,△EFA≌△EGB,故∠FAE=∠GBE
又CD∥AB,∠FAB=∠GBA,
所以∠AFG+∠GBA=180°
故A,B.G,F(xiàn)四點(diǎn)共圓
考點(diǎn):平面幾何證明
點(diǎn)評(píng):四點(diǎn)共圓則四邊形對(duì)角互補(bǔ)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com