2.已知{an}是等差數(shù)列,Sn是其前n項和,
(1)a2=-1,S15=75,求an與Sn;
(2)a1+a2+a3+a4=124,an+an-1+an-2+an-3=156,Sn=210,求項數(shù)n.

分析 (1)利用等差數(shù)列前n項和公式和通項公式列出方程組,求出首項和公差,由此能求出an與Sn
(2)利用等差數(shù)列的通項公式得4(a1+an)=(a1+a2+a3+a4+an+an-1+an-2+an-3),從而求出a1+an=70,由此能求出項數(shù)n.

解答 解:(1)∵{an}是等差數(shù)列,Sn是其前n項和,a2=-1,S15=75,
∴$\left\{\begin{array}{l}{{a}_{2}={a}_{1}+d=-1}\\{{S}_{15}=15{a}_{1}+\frac{15×14}{2}d=75}\end{array}\right.$,
解得a1=-2,d=1,
∴an=-2+(n-1)×1=n-3.
Sn=$-2n+\frac{n(n-1)}{2}×1$=$\frac{{n}^{2}-5n}{2}$.
(2)∵{an}是等差數(shù)列,Sn是其前n項和,
a1+a2+a3+a4=124,an+an-1+an-2+an-3=156,Sn=210,
∴4(a1+an)=(a1+a2+a3+a4+an+an-1+an-2+an-3)=124+156=280,
∴a1+an=70,
∴${S}_{n}=\frac{n}{2}({a}_{1}+{a}_{n})$=$\frac{n}{2}×70=210$,
解得n=6.

點評 本題考查等差數(shù)列的通項公式、前n項和公式的求法,考查等差數(shù)列的項數(shù)n的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=|{x+\frac{1}{x}}$|(x≠0)
(1)求不等式f(x)<|x-1|的解集;
(2)若對?x∈(-∞,0)∪(0,+∞),不等式f(x)>|x-a|-|1+x|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l與曲線y=ex相切于點A(0,1),直線l的方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AB=2BC,∠BAC=30°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)求FC與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知D,E是△ABC邊BC的三等分點,點P在線段DE上,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則xy的取值范圍是( 。
A.[$\frac{1}{9}$,$\frac{4}{9}$]B.[$\frac{1}{9}$,$\frac{1}{4}$]C.[$\frac{2}{9}$,$\frac{1}{2}$]D.[$\frac{2}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的首項為a1(a1≠0),公差為d,且不等式a1x2-3x+2<0的解集為(1,d)
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn-an=$\frac{1}{{n}^{2}+n}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xoy中,已知圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=5-2t}\\{y=3-t}\end{array}}\right.$(t為參數(shù)),定點P(1,1).
(Ⅰ)以原點O為極點,x軸的非負(fù)半軸為極軸,單位長度與平面直角坐標(biāo)系下的單位長度相同建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(Ⅱ)已知直線l與圓C相交于A,B兩點,求||PA|-|PB||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A,B分別為橢圓C:$\frac{x^2}{4}+\frac{y^2}{2}=1$的左、右頂點,P為橢圓C上異于A,B兩點的任意一點,直線PA,PB的斜率分別記為k1,k2
(1)求k1k2;
(2)過坐標(biāo)原點O作與直線PA,PB平行的兩條射線分別交橢圓C于點M,N,問:△MON的面積是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為A、B、C三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).
工種類別ABC
賠付頻率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

同步練習(xí)冊答案