分析 可求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0,解不等式求出函數(shù)的單調(diào)遞增區(qū)間.
解答 解:由題函數(shù)f(x)=x+$\frac{2}{x}$,故f′(x)=1-$\frac{2}{{x}^{2}}$,
令f′(x)=1-$\frac{2}{{x}^{2}}$>0,解得x>$\sqrt{2}$或x<-$\sqrt{2}$,∵x>0,∴x<-$\sqrt{2}$(舍去).
函數(shù)f(x)的單調(diào)遞增區(qū)間為$(\sqrt{2},+∞)$.
故答案為:$(\sqrt{2},+∞)$.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解本題關(guān)鍵是理解導(dǎo)數(shù)與單調(diào)性的關(guān)系以及正確求出函數(shù)的導(dǎo)數(shù),本題中關(guān)于單調(diào)區(qū)間的書(shū)寫(xiě)特別說(shuō)明,若在端點(diǎn)處有意義,則單調(diào)區(qū)間的端點(diǎn)就寫(xiě)成閉區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{400}{3}$m | B. | $\frac{200}{3}$m | C. | 200$\sqrt{3}$m | D. | 100$\sqrt{3}$m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com