19.如圖,在四棱錐E-ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD,連結(jié)AC交BD于點O.
(Ⅰ)求證:平面AEC⊥平面ABCD;
(Ⅱ)判斷在線段AE上是否存在點M,使得DM∥平面BEC,并說明理由.

分析 (Ⅰ)證明:BD⊥AC,利用EC⊥BD,AC∩EC=C,可得BD⊥平面AEC,即可證明平面AEC⊥平面ABCD;
(Ⅱ)取AB中點N,連接MN,DN,MN,易證MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可證得平面DMN∥平面BEC,又DM?平面DMN,于是DM∥平面BEC.

解答 證明:(Ⅰ)設(shè)BD的中點為O′,則AO′⊥BD,CO′⊥BD.∴A,O′,C三點共線,
∴BD⊥AC,
∵EC⊥BD,AC∩EC=C,
∴BD⊥平面AEC,
∵BD?平面ABCD,
∴平面AEC⊥平面ABCD;
(Ⅱ)M為線段AE的中點時,DM∥平面EBC,理由如下:
取AB中點N,連接MN,DN,
∵M是AE的中點,
∴MN∥BE,又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等邊三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,BC?平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM?平面DMN,
∴DM∥平面BEC.

點評 本題考查直線與平面平行的判定,考查線面垂直的判定定理與面面平行的判定定理的應(yīng)用,著重考查分析推理能力與表達、運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,∠BAC=60°,∠A1AC=∠A1AB,AA1=AB=AC=2,點O是BC的中點.
(1)求證:BC⊥平面A1AO;
(2)若A1O=1,求直線BB1與平面A1C1B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.F是拋物線C:y2=4x的焦點,過F作兩條斜率都存在且互相垂直的直線l1,l2,l1交拋物線C于點A,B,l2交拋物線C于點G,H,則$\overrightarrow{AG}$•$\overrightarrow{HB}$的最小值是(  )
A.8B.8$\sqrt{2}$C.16D.16$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某公司有A,B,C,D,E五輛汽車,其中A、B兩輛汽車的車牌尾號均為1,C、D兩輛汽車的車牌尾號均為2,E車的車牌尾號為6,已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為$\frac{1}{2}$,C、D兩輛汽車每天出車的概率均為$\frac{2}{3}$,且五輛汽車是否出車相互獨立,該公司所在地區(qū)汽車限行規(guī)定如下:
車牌尾號0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,A為銳角且f(A)=$\frac{\sqrt{3}}{2}$,a=2,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知正方體ABCD-A1B1C1D1的棱長為1,P是A1C1上任意一點,記平面PAB、平面PBC與下底面所成的二面角分別為α,β,則tan(α+β)的最小值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.若a,b,c>0,求證:
a2(b+c)+b2(a+c)+c2(a+b)≤a3+b3+c3+3abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{6}-\frac{y^2}{3}=1$的焦點為F1、F2,點M在雙曲線上且MF1⊥F1F2,則F1到直線MF2的距離為(  )
A.$\frac{{3\sqrt{6}}}{5}$B.$\frac{{5\sqrt{6}}}{6}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.為了解某高校學生中午午休時間玩手機情況,隨機抽取了100名大學生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學生日均午休時間的頻率分布直方圖:將日均午休時玩手機不低于40分鐘的學生稱為“手機控”.
非手機迷手機迷合計
xxm
y1055
合計75      25           100       
(1)求列表中數(shù)據(jù)的值;
(2)能否有95%的把握認為“手機控”與性別有關(guān)?
注:k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥x00.050.10
k03.8416.635

查看答案和解析>>

同步練習冊答案