20.已知集合A={1,3,2m+3},集合B={3,m2},若A∩B=B,求實數(shù)m的值.

分析 根據(jù)A與B的交集為B,得到B為A的子集,確定出m的值即可.

解答 解:∵A∩B=B,
∴B⊆A,
∵A={1,3,2m+3},B={3,m2},
∴m2=1或m2=2m+3,
解得:m=±1或m=3或-1,
當(dāng)m=1時,A={1,3,5},B={1,3},滿足題意;
當(dāng)m=-1時,不合題意,舍去;
當(dāng)m=3時,A={1,3,9},B={3,9},滿足題意,
綜上,實數(shù)m的值為1或3.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=f(x+1)的定義域是[-2,3],則y=f(x2)的定義域是(  )
A.[-1,4]B.[0,16]C.[-2,2]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列五種說法正確的個數(shù)有( 。
①若A,B,C為三個集合,滿足A∪B=B∩C,則一定有A⊆C;
②函數(shù)的圖象與垂直于x軸的直線的交點有且僅有一個;
③若A⊆U,B⊆U,則A=(A∩B)∪(A∩∁UB);
④若函數(shù)f(x)在[a,b]和[b,c]都為增函數(shù),則f(x)在[a,c]為增函數(shù).
A.1個B.2個C.3 個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“對任意實數(shù)x∈[-1,2],關(guān)于x的不等式x2-a≤0恒成立”為真命題的一個充分不必要條件是( 。
A.a≥4B.a>4C.a>3D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.近期受臺風(fēng)影響給某城市經(jīng)濟造成極大損失,為挽回經(jīng)濟損失,某廠家擬舉辦大型促銷活動,經(jīng)測算,當(dāng)某產(chǎn)品的促銷費用為x萬元時,其銷售量t萬件滿足t=5-$\frac{2}{x+1}$(其中0≤x≤a2-3a+3,a>0),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需要投入成本(10+2t)萬元(不含促銷費用)產(chǎn)品的銷售價格定為(4+$\frac{20}{t}$)萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示成促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.根據(jù)下列條件,求直線的一般方程:
(1)過點(2,1)且與直線2x+3y=0平行;
(2)過點(-3,1),且在兩坐標(biāo)軸上的截距之和為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.34B.55C.78D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)是定義在R上的奇函數(shù)恒滿足,且對任意實數(shù)x恒滿足f(x+2)=-f(x) 當(dāng)x∈[0,2]時,f(x)=2x-x2
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4],求f(x)的解析式;
(3)計算${∫}_{0}^{4}$f(x)dx 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.經(jīng)過點M(2$\sqrt{6}$,-2$\sqrt{6}$)且與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$有共同漸近線的雙曲線方程為(  )
A.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

同步練習(xí)冊答案