13.已知p:-x2+7x+8≥0,q:x2-2x+1-4m2≤0.若“¬p”是“¬q”的充分不必要條件,則實(shí)數(shù)m的取值范圍為[-1,1].

分析 根據(jù)題意,解-x2+7x+8≥0可得p,進(jìn)而可得¬p,同理可得¬q,又由¬p是¬q的充分不必要條件,分析可得$\left\{\begin{array}{l}{1-2|m|≥-1}\\{1+2|m|≤8}\end{array}\right.$,解可得m的取值范圍,即可得答案.

解答 解:根據(jù)題意,對(duì)于p:-x2+7x+8≥0?-1≤x≤8,
則¬p:x<-1或x>8;
q:x2-2x+1-4m2≤0?1-2|m|≤x≤1+2|m|,
則¬q:x<1-2|m|或x>1+2|m|;
若“¬p”是“¬q”的充分不必要條件,
必有{x|x<-1或x>8}?{x|x<1-2|m|或x>1+2|m|},
即$\left\{\begin{array}{l}{1-2|m|≥-1}\\{1+2|m|≤8}\end{array}\right.$,(等號(hào)不同時(shí)成立)
解可得-1≤m≤1;
故答案為:[-1,1].

點(diǎn)評(píng) 本題考查充分條件和必要條件的應(yīng)用,注意分析命題q時(shí),需要討論m的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,A,B是以點(diǎn)C為圓心,R為半徑的圓上的任意兩個(gè)點(diǎn),且|AB|=4,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=( 。
A.16B.8C.4D.與R有關(guān)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且$∠{F_1}P{F_2}=\frac{π}{3}$,則橢圓和雙曲線的離心率乘積的最小值為( 。
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.與命題“若x∈A,則x∈B”等價(jià)的命題為若x∉A,則x∉B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.用輾轉(zhuǎn)相除法求1813和333的最大公約數(shù)時(shí),需要做3次除法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$f(α)=2,α∈[{\frac{π}{12},\frac{5π}{12}}]$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知四棱錐P-ABCD中,底面四邊形ABCD為等腰梯形,且AB∥CD,AB=$\frac{1}{2}$CD,PA=PB=AD,PA+AD=CD=4$\sqrt{3}$,若平面PAB⊥平面ABCD,則四棱錐P-ABCD外接球的表面積為52π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足|AP|=|PM|,NP⊥MA,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在F,H之間),且滿足$\overrightarrow{FG}=λ\overrightarrow{FH}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在邊長為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且$PB=\sqrt{10}$.
(1)求證:BD⊥平面POA;
(2)求二面角B-AP-O的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案