14.函數(shù)f(x)=ax3+bx2+cx-34(a,b,c∈R)的導(dǎo)函數(shù)為f′(x),若不等式f′(x)≤0的解集為{x|-2≤x≤3},且f(x)的極小值等于-196,則a的值是( 。
A.-$\frac{81}{22}$B.$\frac{1}{3}$C.5D..4

分析 求導(dǎo)數(shù),利用韋達(dá)定理,結(jié)合f(x)的極小值等于-196,即可求出a的值.

解答 解:依題意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],
于是有3a>0,-2+3=-$\frac{2b}{3a}$,-2×3=$\frac{c}{3a}$,
解得b=-$\frac{3a}{2}$,c=-18a,
∵函數(shù)f(x)在x=3處取得極小值,
∴有f(3)=27a+9b+3c-34=-196,
∴a=4,
故選:D.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查韋達(dá)定理的運(yùn)用,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)={log_2}({x^2}+2)$,$\overrightarrow a=(m,1)$,$\overrightarrow b=(\frac{1}{2},\frac{m}{2})$,且m>0,若$f(\overrightarrow a•\overrightarrow b)≥f(|\overrightarrow a-\overrightarrow b|)$,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.運(yùn)行以下程序框圖,若輸入的$x∈[{-\frac{π}{2},\frac{π}{2}}]$,則輸出的y的范圍是( 。
A.[-1,1]B.[-1,0]C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是一個(gè)幾何體的三視圖,其中正視圖和側(cè)視圖都是腰長為3,底邊長為2的等腰三角形,則該幾何體的體積是(  )
A.$\frac{{2\sqrt{2}}}{3}π$B.$2\sqrt{2}π$C.$8\sqrt{2}π$D.$\frac{{8\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,一豎立在地面上的圓錐形物體的母線長為4,一只小蟲從圓錐的底面圓上的點(diǎn)P出發(fā),繞圓錐爬行一周后回到點(diǎn)P處,若該小蟲爬行的最短路程為$4\sqrt{3}$,則這個(gè)圓錐的體積為( 。
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{32\sqrt{35}π}}{27}$C.$\frac{{128\sqrt{2}π}}{81}$D.$\frac{{8\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.點(diǎn)P(x,y) 在不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x-2≤0}\end{array}\right.$,的平面區(qū)域內(nèi),則z=2x+y 的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=1og1.20.8,b=1og0.70.8,c=1.20.8,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax+b(a,b∈R).
(Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函數(shù)f(x)的值域;
(ii)若函數(shù)f(x)的值域?yàn)閇0,1],求a,b的值;
(Ⅱ)當(dāng)|x|≥2時(shí),恒有f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)B(-2,0)、C(2,0),且△ABC的周長等于14,求頂點(diǎn)A的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案