6.設(shè)a=1og1.20.8,b=1og0.70.8,c=1.20.8,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

分析 利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=1og1.20.8<log1.21=0,
0=log0.71<b=1og0.70.8<log0.70.7=1,
c=1.20.8>1.20=1,
∴a,b,c的大小關(guān)系是a<b<c.
故選:A.

點評 本題考三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=x3-$\frac{3}{2}$(a+1)x2+3ax+4,其中a∈R.
(1)若f(x)在x=2處取得極值,求常數(shù)a的值;
(2)若f(x)在(-∞,0)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在梯形ABCD中AB∥CD,AD=CD=CB=2,∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=2.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=ax3+bx2+cx-34(a,b,c∈R)的導(dǎo)函數(shù)為f′(x),若不等式f′(x)≤0的解集為{x|-2≤x≤3},且f(x)的極小值等于-196,則a的值是( 。
A.-$\frac{81}{22}$B.$\frac{1}{3}$C.5D..4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)p:函數(shù)$f(x)=\frac{1}{3}{x^3}-a{x^2}+2x+1$ 在區(qū)間[1,2]上是單調(diào)增函數(shù),設(shè)q:方程(2a2-3a-2)x2+y2=1表示雙曲線,“p 且q”為真命題,則實數(shù)a 的取值范圍為$({-\frac{1}{2},\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.cos(π-α)=( 。
A.cosαB.-cosαC.sinαD.-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=$\frac{1}{2x-1}$的定義域為{x|x≠$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知一扇形的弧所對的圓心角為60°,半徑r=20cm,則扇形的周長為40+$\frac{20}{3}$πcm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在長方體ABCD-A1B1C1D1中,AB=2AD=4,A A1=2$\sqrt{2}$,M是C1D1的中點.
(1)在平面A1B1C1D1內(nèi),請作出過點M與BM垂直的直線l,并證明l⊥BM;
(2)設(shè)(1)中所作直線l與BM確定平面為α,求直線BB1與平面α所成角的大。

查看答案和解析>>

同步練習(xí)冊答案