A. | 6 | B. | 4 | C. | -4 | D. | -6 |
分析 利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式可得f(x)=5sin(2ωx-φ)-1,其中sinφ=$\frac{4}{5}$,cosφ=$\frac{3}{5}$,由函數(shù)圖象可求周期T,由f(x0)=4,利用正弦函數(shù)的對稱性可求sin[2ω(x0+1)-φ)=-1,利用正弦函數(shù)的周期性進而可求f(x0+1)的值.
解答 解:∵f(x)=6sinωxcosωx-8cos2ωx+3
=3sin2ωx-4cos2ωx-1
=5sin(2ωx-φ)-1,其中sinφ=$\frac{4}{5}$,cosφ=$\frac{3}{5}$,
∴設函數(shù)f(x)的最小正周期為T,則$\frac{3}{4}$T=(θ+$\frac{3}{2}$)-θ=$\frac{3}{2}$,可得:T=2,
∵f(x0)=4,可得:sin(2ωx0-φ)=1,即f(x)關于x=x0對稱,而x=x0+1與x=x0的距離為半個周期,
∴sin[2ω(x0+1)-φ)=-1,
∴f(x0+1)=5sin[2ω(x0+1)-φ]-1=5×(-1)-1=-6.
故選:D.
點評 本題主要考查了三角函數(shù)的圖象和性質,考查了數(shù)形結合思想的靈活應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,4] | B. | [0,2] | C. | (2,4) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-∞,-\frac{1}{2}}]∪[{1,+∞})$ | B. | $({-∞,-1}]∪[{\frac{1}{2},+∞})$ | C. | $({-∞,0}]∪[{\frac{1}{2},+∞})$ | D. | $({-∞,-\frac{1}{2}}]∪[{0,+∞})$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com