分析 設(shè)點(diǎn)P(x,y),由點(diǎn)P為直線上的任意一點(diǎn),表示出向量$\overrightarrow{AP}$,由$\overrightarrow{AP}$•$\overrightarrow{a}$恒為定值,求出m、n的關(guān)系,再計(jì)算$\frac{m}{n}$.
解答 解:設(shè)點(diǎn)P(x,y),
∵點(diǎn)P為直線3x+y-4=0上的任意一點(diǎn),
∴y=4-3x,
∴$\overrightarrow{AP}$=(x-1,2-3x);
又非零向量$\overrightarrow{a}$=(m,n),
∴$\overrightarrow{AP}$•$\overrightarrow{a}$=m(x-1)+n(2-3x)=(m-3n)x+(2n-m),且恒為定值,
∴m-3n=0,即m=3n;
∴$\frac{m}{n}$=$\frac{3n}{n}$=3.
故答案為:3.
點(diǎn)評 本題考查了平面向量數(shù)量積的定義與應(yīng)用問題,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1)∪(3,+∞) | B. | (-∞,1) | C. | $({-∞,\frac{1}{2}})$ | D. | $({\frac{1}{2},1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-1-\frac{1}{e},1-\frac{1}{e}}]$ | B. | $({-1-\frac{1}{e},-1})∪\left\{{1-\frac{1}{e}}\right\}$ | ||
C. | $({1-\frac{1}{e},+∞})$ | D. | $({-1-\frac{1}{e},-1})∪[{1-\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
考神 | 非考神 | 合計(jì) | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 5 | C. | $\frac{\sqrt{5}}{5}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com