【題目】設為實數(shù),函數(shù).
(1)當時,求在區(qū)間上的最大值;
(2)設函數(shù)為在區(qū)間上的最大值,求的解析式;
(3)求的最小值.
【答案】(1)0(2)t(a)(3)12﹣8
【解析】
(1)a=1時,函數(shù)f(x)=(x﹣1)2﹣1,根據(jù)二次函數(shù)的性質即可求出它的值域;
(2)化簡g(x)=|f(x)|=|x(x﹣2a)|,討論確定函數(shù)的單調性,求出最大值,得出t(a)的解析式;
(3)分別求出各段函數(shù)的最小值(或下確界),比較各個最小值,其中的最小值,即為求t(a)的最小值.
(1)a=1時,f(x)=x2﹣2x=(x﹣1)2﹣1,
∵x∈[0,2],∴﹣1≤x﹣1≤1,
∴﹣1≤(x﹣1)2﹣1≤0,
在區(qū)間上的最大值為0;
(2)g(x)=|f(x)|=|x(x﹣2a)|,
①當a≤0時,g(x)=x2﹣2ax在[0,2]上是增函數(shù),
故t(a)=g(2)=4﹣4a;
②當0<a<1時,
g(x)在[0,a)上是增函數(shù),在[a,2a)上是減函數(shù),在[2a,2]上是增函數(shù),
而g(a)=a2,g(2)=4﹣4a,
g(a)﹣g(2)=a2+4a﹣4=(a﹣22)(a+22),
故當0<a<22時,
t(a)=g(2)=4﹣4a,
當22≤a<1時,
t(a)=g(a)=a2,
③當1≤a<2時,
g(x)在[0,a)上是增函數(shù),在[a,2]上是減函數(shù),
故t(a)=g(a)=a2,
④當a≥2時,g(x)在[0,2]上是增函數(shù),
t(a)=g(2)=4a﹣4,
故t(a);
(3)由(2)知,
當a<22時,t(a)=4﹣2a是單調減函數(shù),,無最小值;
當時,t(a)=a2是單調增函數(shù),且t(a)的最小值為t(22)=12﹣8;
當時,t(a)=4a﹣4是單調增函數(shù),最小值為t(2)=4;
比較得t(a)的最小值為t(22)=12﹣8.
科目:高中數(shù)學 來源: 題型:
【題目】設向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點的坐標為.
(1)求點的坐標;
(2)求函數(shù)的單調增區(qū)間及對稱軸方程;
(3)若把方程的正實根從小到大依次排列為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解高一學生暑假里在家讀書情況,特隨機調查了50名男生和50名女生平均每天的閱讀時間(單位:分鐘),統(tǒng)計如下表:
(1)根據(jù)統(tǒng)計表判斷男生和女生誰的平均讀書時間更長?并說明理由;
(2)求100名學生每天讀書時間的平均數(shù),并將每天平均時間超過和不超過平均數(shù)的人數(shù)填入下列的列聯(lián)表:
(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認為“平均閱讀時間超過或不超過平均數(shù)是否與性別有關?”
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為上的偶函數(shù),當時,.對于結論
(1)當時,;
(2)函數(shù)的零點個數(shù)可以為;
(3)若函數(shù)在區(qū)間上恒為正,則實數(shù)的范圍是
以上說法正確的序號是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個隨機數(shù)為一組,代表三次射擊的結果,產(chǎn)生了如下20組隨機數(shù):
據(jù)此估計,該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】利用獨立性檢驗的方法調查高中生性別與愛好某項運動是否有關,通過隨機調查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結論是( )
A. 有99%以上的把握認為“愛好該項運動與性別無關”
B. 有99%以上的把握認為“愛好該項運動與性別有關”
C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關”
D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
【答案】(1);.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點,代入向量,利用三角函數(shù)的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數(shù)方程為(為參數(shù)).
直線的直角坐標方程為.
(Ⅱ)由直線的方程可得點,點.
設點,則 .
.
由(Ⅰ)知,則 .
因為,所以.
【題型】解答題
【結束】
23
【題目】選修4-5:不等式選講
已知函數(shù), .
(Ⅰ)若對于任意, 都滿足,求的值;
(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,橢圓的離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.
(1)求的方程;
(2)設過點的動直線與相交于兩點,問:是否存在直線,使以為直徑的圓經(jīng)過原點,若存在,求出對應直線的方程,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com