精英家教網 > 高中數學 > 題目詳情
6.設 f:A→B是從A到B的映射,下列敘述正確的有( 。
①A中每一元素在B中有唯一象   ②B中每一元素與A中唯一元素對應
③B中元素可以在A中無原象        ④B是A中所有元素的象的集合
⑤A中元素可以在B中無象.
A.3個B.2個C.1個D.0個

分析 根據映射的定義A集合中的任一一個元素在B中均有且只有一個元素與其對應,其中A中的元素為B中對應元素的原象,B中元素成為象.據此對題目中的5個結論逐一進行判斷即可得到答案.

解答 解:根據映射的定義,
易得①A中每一元素在B中有唯一象,正確;
②B中的某一個元素b的原象可能不止一個,故不正確;
③B中元素可以在A中無原象,正確
④B是A中所有元素的象的集合,不正確;
⑤由于集合中的任一一個元素在B中均有且只有一個元素與其對應,故錯誤;
故選B.

點評 本題考查的知識點是映射的定義,根據映射的定義:設A和B是兩個非空集合,如果按照某種對應關系f,對于集合A中的任何一個元素a,在集合B中都存在唯一的一個元素b與之對應,那么,這樣的對應叫做集合A到集合B的映射,記作f:A→B.其中,b稱為a在映射f下的象,記作:b=f(a); a稱為b關于映射f的原象.集合A中多有元素的像的集合記作f(A).解答本題的關鍵是緊抓A中元素的任意性和B中元素的唯一性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

16.已知:橢圓C過點A(1,$\frac{3}{2}$),兩個焦點為(-1,0),(1,0).
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE和AF關于x=1對稱,證明直線EF的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.直線xsin 30°+ycos 150°+1=0的斜率是(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.等差數列{an}中,若a5=6,a3=2,則公差為( 。
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知直線l的參數方程為$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$  (t為參數),若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-$\frac{π}{4}$).
(1)求直線l的傾斜角和曲線C的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,設點P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知函數f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≥1}\\{x-1,x<1}\end{array}}$,對其敘述正確的有幾個?( 。
①定義域是R,
②定義域是∅,
③定義域是區(qū)間[1,+∞),
④在定義域上是增函數,
⑤在區(qū)間[1,+∞)上是增函數,
⑥是奇函數,
⑦f(a2+1)=a2,
⑧f(x)的最小值為2.
A.0B.3C.4D.7

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.2B.5$\sqrt{2}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.拋物線y2=12x上與焦點的距離等于6的點的坐標是(3,6)或(3,-6).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知約束條件$\left\{\begin{array}{l}x≥k\\ x+y-4≤0\\ x-y≤0\end{array}\right.$表示面積為1的直角三角形區(qū)域,則實數k的值為( 。
A.0B.1C.1或3D.3

查看答案和解析>>

同步練習冊答案