分析 (1)由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),可得c=1,$\frac{1}{{a}^{2}}$+$\frac{9}{4^{2}}$=1,a2=b2+c2,聯(lián)立解出即可得出.
(2)直線AE和AF關(guān)于x=1對(duì)稱,可得直線AE和AF的斜率互為相反數(shù).設(shè)直線AE的斜率為k,則AF的斜率為-k,直線AE,AF的方程分別為:y-$\frac{3}{2}$=k(x-1),y-$\frac{3}{2}$=-k(x-1),分別與橢圓方程聯(lián)立,再利用根與系數(shù)的關(guān)系、斜率計(jì)算公式,即可證明.
解答 (1)解:由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),
則c=1,$\frac{1}{{a}^{2}}$+$\frac{9}{4^{2}}$=1,a2=b2+c2,
聯(lián)立解得c=1,a=2,b2=3.
∴橢圓C的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)證明:∵直線AE和AF關(guān)于x=1對(duì)稱,∴直線AE和AF的斜率互為相反數(shù).
設(shè)直線AE的斜率為k,則AF的斜率為-k,
直線AE,AF的方程分別為:y-$\frac{3}{2}$=k(x-1),y-$\frac{3}{2}$=-k(x-1),
聯(lián)立$\left\{\begin{array}{l}{y-\frac{3}{2}=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化為:(3+4k2)x2+4k(3-2k)x+4k2-12k-3=0,
∴1×xE=$\frac{4{k}^{2}-12k-3}{3+4{k}^{2}}$,解得xE=$\frac{4{k}^{2}-12k-3}{3+4{k}^{2}}$,yE=$\frac{-4{k}^{2}-6k+9}{2(3+4{k}^{2})}$.
同理可得:xF=$\frac{4{k}^{2}+12k-3}{3+4{k}^{2}}$,yF=$\frac{-4{k}^{2}+12k+9}{2(3+4{k}^{2})}$.
∴kEF=$\frac{{y}_{E}-{y}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{-9k}{-24k}$=$\frac{3}{8}$為定值.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、斜率計(jì)算公式,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com