4.在平面直角坐標(biāo)系xOy中,將函數(shù)y=sin2x的圖象向左平移$\frac{π}{12}$個(gè)單位得到函數(shù)g(x)的圖象,則g($\frac{π}{12}$)的值為$\frac{\sqrt{3}}{2}$.

分析 通過三角函數(shù)的平移變換規(guī)律求出g(x)的解析式,即可求出g($\frac{π}{12}$)的值.

解答 解:由y=sin2x的圖象向左平移$\frac{π}{12}$個(gè)單位,
得到sin2(x+$\frac{π}{12}$)=sin(2x+$\frac{π}{6}$)=g(x),
那么:g($\frac{π}{12}$)=sin(2×$\frac{π}{12}$+$\frac{π}{6}$)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了研究某種微生物的生長(zhǎng)規(guī)律,需要了解環(huán)境溫度x(°C)對(duì)該微生物的活性指標(biāo)y的影響,某實(shí)驗(yàn)小組設(shè)計(jì)了一組實(shí)驗(yàn),并得到如表的實(shí)驗(yàn)數(shù)據(jù):
環(huán)境溫度x(°C)1234567
活性指標(biāo)y28272624252322
(Ⅰ)由表中數(shù)據(jù)判斷y關(guān)于x的關(guān)系較符合$\widehaty=\widehatbx+\widehata$還是$\widehaty={2^{\widehatbx+\widehata}}$,并求y關(guān)于x的回歸方程($\widehata$,$\widehatb$取整數(shù));
(Ⅱ)根據(jù)(Ⅰ)中的結(jié)果分析:若要求該種微生物的活性指標(biāo)不能低于26.3,則環(huán)境溫度應(yīng)不得高于多少°C?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在[0,a](a>0)上隨機(jī)抽取一個(gè)實(shí)數(shù)x,若x滿足$\frac{x-2}{x+1}$<0的概率為$\frac{1}{2}$,則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\frac{{ln({2x})}}{x}$,關(guān)于x的不等式f2(x)+af(x)>0只有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍為(-ln2,-$\frac{ln6}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=axlnx+b在點(diǎn)(1,f(1))處的切線方程為y=x-1,g(x)=λ(x-1)(其中λ為常數(shù)).
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)任意x∈[1,+∞),不等式f(x)≥g(x)恒成立,求實(shí)數(shù)λ的取值范圍;
(3)當(dāng)x>1時(shí),求證:[f(x-1)-(x-3)][f(ex)-3(ex-3)]≥9-e2(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,0≤x≤$\frac{1}{2}$≤y≤1,則|x$\overrightarrow{a}$+y$\overrightarrow$+(1-x-y)$\overrightarrow{c}$|的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$ (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2=$\frac{4}{1+si{n}^{2}θ}$,且直線l經(jīng)過點(diǎn)F(-$\sqrt{2}$,0)
( I )求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列參數(shù)方程中表示直線x+y-2=0的是( 。
A.$\left\{\begin{array}{l}x=2+t\\ y=1-t\end{array}\right.(t$為參數(shù))B.$\left\{\begin{array}{l}x=1-\sqrt{t}\\ y=1+\sqrt{t}\end{array}\right.(t$為參數(shù))
C.$\left\{\begin{array}{l}x=3+t\\ y=-1-t\end{array}\right.(t$為參數(shù))D.$\left\{\begin{array}{l}x=1-{t^2}\\ y=1+{t^2}\end{array}\right.(t$為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在區(qū)間(0,5)內(nèi)任取一個(gè)實(shí)數(shù)m,則滿足3<m<4的概率為$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案