8.數(shù)列{an}中,a1=3,{bn}是等差數(shù)列且bn=an+1-an(n∈N*),若b3=-2,b10=12,則a3=( 。
A.0B.-7C.-9D.-3

分析 先利用等差數(shù)列的通項公式分別表示出b3和b10,聯(lián)立方程求得b1和d的值,進而利用疊加法求得b1+b2+…+bn=an+1-a1,即可求得所求.

解答 解:依題意可知$\left\{\begin{array}{l}{_{1}+2d=-2}\\{_{1}+9d=12}\end{array}\right.$,解得b1=-6,d=2
∵bn=an+1-an,
∴b1+b2+…+bn=an+1-a1
∴a3=b1+b2+3=-6-4+3=-7
故選B.

點評 本題主要考查了數(shù)列的遞推式,以及對數(shù)列基礎(chǔ)知識的熟練掌握,同時考查了運算求解的能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知命題p:?x∈(1,+∞),log3(x+2)-$\frac{2}{{2}^{x}}$>0,則下列敘述正確的是( 。
A.¬p為:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$≤0B.¬p為:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$<0
C.¬p為:?x∈(-∞,1],log3(x+2)-$\frac{2}{2^x}$≤0D.¬p是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=|x2-2x-3|,則f(x)在(-1,+∞)上的減區(qū)間為[1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,${a}_{n}={(-1)}^{n}(2n-1)$,n∈N*
(Ⅰ)求S1,S2,S3
(Ⅱ)由(Ⅰ)推測Sn的公式,并用數(shù)學歸納法證明你的推測.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知e為自然對數(shù)的底數(shù),若對任意的x1∈[0,1],總存在唯一的x2∈[-1,1],使得x1+x22•e${\;}^{{x}_{2}}$-a=0成立,則實數(shù)a的取值范圍是( 。
A.[1,e]B.(1,e]C.(1+$\frac{1}{e}$,e]D.[1+$\frac{1}{e}$,e]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知不等式$(x+y)(\frac{1}{x}+\frac{a}{y})≥25$對任意正實數(shù)x,y恒成立,則正實數(shù)a的最小值為(  )
A.$\frac{625}{16}$B.16C.$\frac{25}{16}$D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.盒中有1個黑球,9個白球,它們除顏色不同外,其他方面沒什么差別,現(xiàn)由10人依次摸出1個球后放回,設(shè)第1個人摸出黑球的概率是P1,第10個人摸出黑球的概率是P10,則( 。
A.P10=$\frac{1}{10}$P1B.P10=$\frac{1}{9}$P1C.P10=0D.P10=P1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列{an}滿足an+2-an+1=an+1-an,n∈N*,且${a_4}=\frac{π}{2}$,若函數(shù)$f(x)=sin2x+2{cos^2}\frac{x}{2}$,記yn=f(an),則{yn}的前7項和為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點(1,$\frac{\sqrt{3}}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C長軸上的一個動點,過P作斜率為$\frac{1}{2}$的直線l交橢圓C于A、B兩點,求證:|PA|2+|PB|2為定值.

查看答案和解析>>

同步練習冊答案