2.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-{x^2},x≥0\\ cosπx,x<0.\end{array}$若關(guān)于x的方程f(x+a)=0在(0,+∞)內(nèi)有唯一實(shí)根,則實(shí)數(shù)a的最小值是-$\frac{1}{2}$.

分析 作出f(x)的函數(shù)圖象,根據(jù)函數(shù)圖象得出a的范圍即可得出答案.

解答 解:作出f(x)的函數(shù)圖象如圖所示:

∵f(x+a)在(0,+∞)上有唯一實(shí)根,
∴f(x)在(a,+∞)上有唯一實(shí)根,
∴-$\frac{1}{2}$≤a<1.
故答案為$-\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了零點(diǎn)與函數(shù)圖象的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(文科)如圖,在空間四面體ABCD中,若E,F(xiàn),G,H分別是AB,BD,CD,AC的中點(diǎn),
(1)求證:四邊形EFGH是平行四邊形.
(2)求證:BC∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知圓C:x2+y2=1,點(diǎn)P為直線$\frac{x}{4}$+$\frac{y}{2}$=1上一動(dòng)點(diǎn),過(guò)點(diǎn)P向圓C引兩條切線PA,PB,A,B為切點(diǎn),則直線AB經(jīng)過(guò)定點(diǎn)( 。
A.$({\frac{1}{2},\frac{1}{4}})$B.$({\frac{1}{4},\frac{1}{2}})$C.$({\frac{{\sqrt{3}}}{4},0})$D.$({0,\frac{{\sqrt{3}}}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥底面ABCD,且△PAD是邊長(zhǎng)為2的等邊三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面MBD.
(1)求證:M是PC的中點(diǎn);
(2)求多面體PABMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某折疊餐桌的使用步驟如圖所示,有如圖檢查項(xiàng)目:

項(xiàng)目①:折疊狀態(tài)下(如圖1),檢查四條桌腿長(zhǎng)相等;
項(xiàng)目②:打開(kāi)過(guò)程中(如圖2),檢查OM=ON=O'M'=O'N';
項(xiàng)目③:打開(kāi)過(guò)程中(如圖2),檢查OK=OL=O'K'=O'L';
項(xiàng)目④:打開(kāi)后(如圖3),檢查∠1=∠2=∠3=∠4=90°;
項(xiàng)目⑤:打開(kāi)后(如圖3),檢查AB=A'B'=C'D'=CD.
在檢查項(xiàng)目的組合中,可以正確判斷“桌子打開(kāi)之后桌面與地面平行的是”( 。
A.①②③B.②③④C.②④⑤D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2-2ax+4(a-1)ln(x+1),其中實(shí)數(shù)a<3.
(Ⅰ)判斷x=1是否為函數(shù)f(x)的極值點(diǎn),并說(shuō)明理由;
(Ⅱ)若f(x)≤0在區(qū)間[0,1]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知拋物線關(guān)于x軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)為F,并且經(jīng)過(guò)點(diǎn)M(2,y0).若點(diǎn)M到該拋物線焦點(diǎn)的距離為3,則△MOF的面積為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知tan(α-β)=$\frac{2}{3}$,tan($\frac{π}{6}$-β)=$\frac{1}{2}$,則tan(α-$\frac{π}{6}$)等于( 。
A.$\frac{1}{4}$B.$\frac{7}{8}$C.$\frac{1}{8}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.對(duì)于正整數(shù)集合A={a1,a2,…,an}(n∈N*,n≥3),如果去掉其中任意一個(gè)元素ai(i=1,2,…,n)之后,剩余的所有元素組成的集合都能分為兩個(gè)交集為空集的集合,且這兩個(gè)集合的所有元素之和相等,就稱(chēng)集合A為“和諧集”.
(Ⅰ)判斷集合{1,2,3,4,5}是否是“和諧集”(不必寫(xiě)過(guò)程);
(Ⅱ)求證:若集合A是“和諧集”,則集合A中元素個(gè)數(shù)為奇數(shù);
(Ⅲ)若集合A是“和諧集”,求集合A中元素個(gè)數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案