19.若命題“直線y=kx+2與圓x2+y2=1有公共點(diǎn)”是假命題,則實(shí)數(shù)k的取值范圍是(-$\sqrt{3},\sqrt{3}$).

分析 由題意可知:圓心(0,0)到直線y=kx+2距離d=$\frac{丨2丨}{\sqrt{1+{k}^{2}}}$≤1,由命題P“直線y=kx+2與圓x2+y2=1有公共點(diǎn)”是假命題,則¬P為真,即可求得k的取值范圍.

解答 解:由題意可知:直線y=kx+2與圓x2+y2=1有公共點(diǎn),即圓心到直線y=kx+2距離d≤1,
∴圓心(0,0)到直線y=kx+2距離d=$\frac{丨2丨}{\sqrt{1+{k}^{2}}}$≤1,解得:k≥$\sqrt{3}$或k≤-$\sqrt{3}$,
由命題P“直線y=kx+2與圓x2+y2=1有公共點(diǎn)”是假命題,則¬P為真,
∴-$\sqrt{3}$<k<$\sqrt{3}$,
實(shí)數(shù)k的取值范圍(-$\sqrt{3}$,$\sqrt{3}$),
故答案為:(-$\sqrt{3}$,$\sqrt{3}$).

點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查命題的真假性的判斷,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{{{log}_{0.5}}(-x),x<0}\end{array}}\right.$.
(I)求$f(f(-\frac{1}{4}))$的值;
(II)若f(a)>f(-a),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式(x+$\frac{1}{2}$)($\frac{3}{2}$-x)≥0的解集是( 。
A.{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}B.{x|x≤-$\frac{1}{2}$或x≥$\frac{3}{2}$}C.{x|x<-$\frac{1}{2}$或x>$\frac{3}{2}$}D.{x|-$\frac{1}{2}$<x<$\frac{3}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若x軸為曲線f(x)=x3-ax-$\frac{1}{4}$的切線,則a=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,側(cè)面PAD同時垂直側(cè)面PAB與側(cè)面PDC.若PA=AB=AD=$\frac{{\sqrt{3}}}{3}$PB,則$\frac{BC}{AD}$=$\frac{3}{2}$,直線PC與底面ABCD所成角的正切值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別是a,b,c,且a=1,b=$\sqrt{3}$,A=30°.
(1)求sinB的值;
(2)求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程f(x)=x有兩個相等的實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈(0,2)時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若X是一個非空集合,M是一個以X的某些子集為元素的集合,且滿足:
(1)X∈M,Φ∈M;
(2)對于X的任意子集A,B,當(dāng)A∈M,B∈M時,A∪B∈M,A∩B∈M.則稱M是集合X的一個“M-集合類”.
例如:M={Φ,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若α為第三象限角,則$\sqrt{1-sin{α}^{2}}$的結(jié)果為( 。
A.sinαB.-sinαC.cosαD.-cosα

查看答案和解析>>

同步練習(xí)冊答案