20.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(x,3),且$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow$|=(  )
A.3B.5C.$\sqrt{5}$D.3$\sqrt{5}$

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,∴-x-6=0,解得x=-6.
則|$\overrightarrow$|=$\sqrt{(-6)^{2}+{3}^{2}}$=3$\sqrt{5}$.
故選:D.

點(diǎn)評(píng) 本題考查了向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xoy中,A,B,C均為⊙O上的點(diǎn),其中A($\frac{3}{5}$,$\frac{4}{5}$),C(1,0),點(diǎn)B在第二象限.
(1)設(shè)∠COA=θ,求tan2θ的值;
(2)若△AOB為等邊三角形,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ax2-lnx,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn) (1,f(1))處的切線方程;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值為$\frac{3}{2}$,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)x∈(0,+∞)時(shí),求證:e2x3-2x>2(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y.
(1)求x+y能被3整除的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問(wèn)這個(gè)游戲規(guī)則公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知四邊形ABCD是矩形,AD=4,AB=2,E、F分別是線段AB、BC的中點(diǎn),PA⊥面ABCD.
(Ⅰ)證明PF⊥FD;
(Ⅱ)在PA上找一點(diǎn)G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,|$\overrightarrow{a}$-$\overrightarrow$|=2.
(1)求$\overrightarrow{a}$•$\overrightarrow$的值;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|的值.
(3)求$\overrightarrow{a}$在$\overrightarrow$上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,在圓C中,點(diǎn)A,B在圓上,已知|AB|=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值( 。
A.1B.2C.4D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)(x∈R)滿足f(-x)=8-f(4+x),函數(shù)g(x)=$\frac{4x+3}{x-2}$,若函數(shù)f(x)與g(x)的圖象共有168個(gè)交點(diǎn),記作Pi(xi,yi)(i=1,2,…,168),則(x1+y1)+(x2+y2)+…+(x168+y168)的值為( 。
A.2018B.2017C.2016D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$滿足3|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,<$\overrightarrow{m}$,$\overrightarrow{n}$>=60°,若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$)則實(shí)數(shù)t的值為( 。
A.3B.-3C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案