已知x>0,y>0,x+3y=1,則
1
x
+
1
y
的最小值為
 
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答: 解:∵x>0,y>0,x+3y=1,
1
x
+
1
y
=(x+3y)(
1
x
+
1
y
)
=4+
3y
x
+
x
y
≥4+2
3y
x
x
y
=4+2
3
,當(dāng)且僅當(dāng)x=
3
y=
3
-1
2
時(shí)取等號(hào).
1
x
+
1
y
的最小值為:4+2
3

故答案為:4+2
3
點(diǎn)評(píng):本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)一個(gè)樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如表:
區(qū)間 [17,19) [19,21) [21,23) [23,25) [25,27) [27,29) [29,31) [31,33]
頻數(shù) 1 1 3 3 18 16 28 30
估計(jì)小于29的數(shù)據(jù)大約占總體的(  )
A、42%B、58%
C、40%D、16%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2tan(ωx+
π
3
)(ω>0)
的最小正周期為
π
2

(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

里氏震級(jí)是由兩位來(lái)自美國(guó)加州理工學(xué)院的地震學(xué)家里克特(C.F.Richter)和古登堡(B.Gutenberg)于1935年提出的一種震級(jí)標(biāo)度.里氏震級(jí)M的計(jì)算公式是M=lgA-lgA0.其中A是被測(cè)地震的最大振幅,A0是“標(biāo)準(zhǔn)地震”的振幅.2011年3月11日,日本東北部海域發(fā)生里氏9.0級(jí)地震并引發(fā)海嘯,造成重大人員傷亡和財(cái)產(chǎn)損失.一般里氏6級(jí)地震給人的震撼已十分強(qiáng)烈.按照里氏震級(jí)M的計(jì)算公式,此次日本東北部大地震的最大振幅是里氏6級(jí)地震最大振幅的
 
倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
1
x
≤2
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校高中部組織赴美游學(xué)活動(dòng),其中高一240人,高二260人,高三300人,現(xiàn)需按年級(jí)抽樣分配參加名額40人,高二參加人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(2x+1)=x2,則f′(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
2
1
(1+
1
x
)dx
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(2x+π)是( 。
A、周期為π的奇函數(shù)
B、周期為π的偶函數(shù)
C、周期為2π的奇函數(shù)
D、周期為2π的偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案