7.如圖,四棱錐P-ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.

分析 (1)推導(dǎo)出AD⊥AP,AP⊥AB,從而AP⊥平面ABCD,由此能證明CD⊥AP.
(2)由CD⊥AP,CD⊥PD,得CD⊥平面PAD.再推導(dǎo)出AB⊥AD,AP⊥AB,從而AB⊥平面PAD,進(jìn)而CD∥AB,由此能證明CD∥平面PAB.

解答 (本小題滿分14分)
證明:(1)因?yàn)锳D⊥平面PAB,AP?平面PAB,所以AD⊥AP.…(2分)
又因?yàn)锳P⊥AB,AB∩AD=A,AB?平面ABCD,AD?平面ABCD,
所以AP⊥平面ABCD.…(4分)
因?yàn)镃D?平面ABCD,所以CD⊥AP.…(6分)
(2)因?yàn)镃D⊥AP,CD⊥PD,且PD∩AP=P,PD?平面PAD,AP?平面PAD,
所以CD⊥平面PAD.①…(8分)
因?yàn)锳D⊥平面PAB,AB?平面PAB,所以AB⊥AD.
又因?yàn)锳P⊥AB,AP∩AD=A,AP?平面PAD,AD?平面PAD,
所以AB⊥平面PAD.②…(10分)
由①②得CD∥AB,…(12分)
因?yàn)镃D?平面PAB,AB?平面PAB,所以CD∥平面PAB.…(14分)

點(diǎn)評 本題考查線線垂直的證明,考查線面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x=log52,y=ln2,z=${2}^{\frac{1}{2}}$,則下列結(jié)論正確的是(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若(x+$\frac{1}{x}$)n展開式的二項(xiàng)式系數(shù)之和為64,則其常數(shù)項(xiàng)的值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知圓O1:(x+1)2+y2=1和O2:(x-1)2+y2=9,動(dòng)圓P與圓O1外切,與圓O2內(nèi)切.
(Ⅰ)求圓心P的軌跡E的方程;
(Ⅱ)過A(-2,0)作兩條互相垂直的直線l1,l2分別交曲線E于M,N兩點(diǎn),設(shè)l1的斜率為k(k>0),△AMN的面積為S,求$\frac{S}{k}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將函數(shù)f(x)=sinx的圖象向右平移$\frac{π}{3}$個(gè)單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,直線l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),與曲線C:$\left\{\begin{array}{l}{x=4{k}^{2}}\\{y=4k}\end{array}\right.$(k為參數(shù))交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2017年郴州市兩會召開前夕,某網(wǎng)站推出兩會熱點(diǎn)大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問題是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占80%,現(xiàn)從參與者中隨機(jī)選出200人,并將這200人按年齡分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65),得到的頻率分布直方圖如圖所示:
(Ⅰ)求出頻率分布直方圖中a的值,并求出這200人的平均年齡;
(Ⅱ)現(xiàn)在要從年齡較小的第1組和第2組中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人贈送禮品,求抽取的2人中至少有人年齡在第1組的概率;
(Ⅲ)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中不關(guān)注民生問題的人中老年人有10人,根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為關(guān)注民生問題與年齡有關(guān)?
關(guān)注民生不關(guān)注民生合計(jì)
青少年組90                     30                             120                     
中老年組701080
合計(jì)16040200
附:
p(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過拋物線y2=2px(p>0)的焦點(diǎn)F作傾斜角為60°的直線,與拋物線分別交于A,B兩點(diǎn)(點(diǎn)A在x軸上方),S△OAF=$\frac{\sqrt{3}}{4}$p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,焦點(diǎn)在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{1}{2}$,F(xiàn)、A分別是橢圓的一個(gè)焦點(diǎn)和頂點(diǎn),P是橢圓上任意一點(diǎn),則$\overrightarrow{PF}$•$\overrightarrow{PA}$的最大值為4.

查看答案和解析>>

同步練習(xí)冊答案