17.已知函數(shù)f(x)=x2-(k-2)x+k2+3k+5有兩個(gè)零點(diǎn).
(1)若函數(shù)的兩個(gè)零點(diǎn)都大于-2,求k的取值范圍;
(2)若函數(shù)的兩個(gè)零點(diǎn)是α和β,求α22的取值范圍.

分析 (1)、根據(jù)題意,結(jié)合二次函數(shù)的性質(zhì)分析可得$\left\{\begin{array}{l}{△=(k-2)^{2}-4({k}^{2}+3k+5)>0}\\{f(-2)=4+2(k-2)+({k}^{2}+3k+5)>0}\\{\frac{k-2}{2}<-2}\end{array}\right.$,解可得k的范圍,即可得答案;
(2)若函數(shù)的兩個(gè)零點(diǎn)是α和β,即方程x2-(k-2)x+k2+3k+5=0的兩根為α和β,首先方程有2根,則有△=(k-2)2-4(k2+3k+5)≥0,解可得k的范圍,進(jìn)而由根與系數(shù)的關(guān)系的關(guān)系可得$\left\{\begin{array}{l}{α+β=k-2}\\{α•β={k}^{2}+3k+5}\end{array}\right.$,分析有α22=(α+β)-2αβ=-k2-10k-6,結(jié)合k的范圍,分析可得(-k2-10k-6)的范圍,即可得答案.

解答 解:(1)根據(jù)題意,函數(shù)f(x)=x2-(k-2)x+k2+3k+5有兩個(gè)大于-2的零點(diǎn),
則二次函數(shù)f(x)=x2-(k-2)x+k2+3k+5與x軸有2個(gè)交點(diǎn),且交點(diǎn)都在(-2,0)的右側(cè),
則有$\left\{\begin{array}{l}{△=(k-2)^{2}-4({k}^{2}+3k+5)>0}\\{f(-2)=4+2(k-2)+({k}^{2}+3k+5)>0}\\{\frac{k-2}{2}<-2}\end{array}\right.$,
解可得$\frac{-5+\sqrt{5}}{2}$<k<-$\frac{4}{3}$,
故k的取值范圍是($\frac{-5+\sqrt{5}}{2}$,-$\frac{4}{3}$);
(2)若函數(shù)的兩個(gè)零點(diǎn)是α和β,即方程x2-(k-2)x+k2+3k+5=0的兩根為α和β,
則必有△=(k-2)2-4(k2+3k+5)≥0,
解可得-4≤k≤-$\frac{4}{3}$,
又由$\left\{\begin{array}{l}{α+β=k-2}\\{α•β={k}^{2}+3k+5}\end{array}\right.$,
α22=(α+β)2-2αβ=-k2-10k-6,
又由-4≤k≤-$\frac{4}{3}$,
令t=-k2-10k-6,則t=-(k+5)2+19,
又由-4≤k≤-$\frac{4}{3}$,
則$\frac{50}{9}$≤t≤18;
則α22的取值范圍是[$\frac{50}{9}$,18]

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),涉及函數(shù)零點(diǎn)的定義與判定,關(guān)鍵是正確掌握理解函數(shù)與方程的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=λ+(n-1)•2n,又?jǐn)?shù)列{bn}滿(mǎn)足:an•bn=n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)λ為何值時(shí),數(shù)列{bn}是等比數(shù)列?并求此時(shí)數(shù)列{bn}的前n項(xiàng)和Tn取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)是定義在R上的偶函數(shù),下列說(shuō)法:
①f(0)=0;
②若f(x)在[0,+∞)上有最小值-1,則f(x)在(-∞,0]上有最大值1;
③若f(x)在[1,+∞)上為增函數(shù),則f(x)在(-∞,-1]上為減函數(shù).
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知角α終邊上一點(diǎn)P(-12,5),則cosα=-$\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某中學(xué)為了增強(qiáng)學(xué)生的漢語(yǔ)興趣,舉行了漢字成語(yǔ)聽(tīng)寫(xiě)競(jìng)賽,共有450名學(xué)生參加了本次競(jìng)賽活動(dòng)(其中高一225人,高二135人,高三90人),為了解本次競(jìng)賽活動(dòng)成績(jī)情況,現(xiàn)用分層抽樣的方法從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),分值l00分)進(jìn)行統(tǒng)計(jì),請(qǐng)你根據(jù)尚未完成的頻率分布表解答下列問(wèn)題:
分組頻數(shù)頻率
[60,70)0.16
[70,80)14
[80,90)160.32
[90,100]0.24
合計(jì)
(1)求①,②,③處的數(shù)值;
(2)求高二年級(jí)共抽取多少人;
(3)估計(jì)參賽學(xué)生平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,正方體ABCD-A1B1C1D1的棱線長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=$\frac{1}{2}$,給出下列命題:
①AC⊥BE   
②EF∥平面ABCD
③△AEF的面積與△BEF的面積相等
④三棱錐A-BEF的體積為定值
⑤異面直線AE,BF所成角不變
其中正確命題的序號(hào)是①②④(寫(xiě)出你認(rèn)為正確的所有命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知平面ABC外一點(diǎn)P,且PH⊥平面ABC于點(diǎn)H.給出下列四個(gè)命題:
①若PA⊥BC,PB⊥AC,則點(diǎn)H是△ABC的垂心;
②若PA,PB,PC兩兩互相垂直,則點(diǎn)H是△ABC的垂心;
③若∠ABC=90°,點(diǎn)H是AC的中點(diǎn),則PA=PB=PC;
 ④若PA=PB=PC,則點(diǎn)H是△ABC的外心.
其中正確命題的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.不等式$\frac{2x-1}{x+3}$>0的解集是( 。
A.($\frac{1}{2}$,+∞)B.(4,+∞)C.(-∞,-3)∪(4,+∞)D.(-∞,-3)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知二次函數(shù)f(x)的對(duì)稱(chēng)軸x=2,f(x)的最小值為-3,且滿(mǎn)足f(0)=1.
(1)求f(x)的解析式.
(2)若f(($\frac{1}{2}$)x)>k對(duì)x∈[-1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案